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Introduction

- Fifth-year Public Policy PhD student; undergrad in
environmental science/economics at Harvard

- Studying environmental, climate, and energy economics;
research includes:

- Methods used to value non-market environmental
amenities

- Distributional impacts of flooding and flood adaptation
investments

- Clean energy technology policy

- Fields: Environment/Energy, Industrial Organization,
Public Finance

- Committee: Joe Aldy, Myrto Kalouptsidi, Ariel Pakes
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Roadmap for Part II

- Day 1: Constrained Optimization

- Substitution/Lagrangian methods, convex/non-convex sets, concavity/quasicocavity

- Day 2:
1. Comparative Statics

- Total differentiation/derivatives, implicit functions, comparative statics

2. Linear Algebra

- Matrics, matrix operations, matrix properties, matrix inverses, systems of equations

- Day 3: Probability and Statistics

- Random variables, probability distributions, sampling theory

2 / 49



Goals for Part II

- This is entirely for your benefit; you will not be graded!

- Provide a refresher of basic concepts, tools, and exercises that will come up often during
G1 coursework in microeconomics and econometrics

- Get you back in the practice of solving problems by hand

- Much of your first (and possibly second) year will be spent on problem sets

- Give you a chance to get to know your peers/classmates

- Much of your first (and possibly second) year will be spent on problem sets
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General structure of Part II

- For a given topic, we will use the following general formula:

- Brief lecturing on a given topic
- Interactive example problems, both altogether and in groups
- If time allows, additional small group problem solving

- Will plan to take hour-long lunch breaks around noon, frequent breaks

- Will likely wrap up each day between 3:00 and 4:00pm

- I will always stick around during breaks/at the end of the day for questions

- Materials:

- Notes ≈ slides
- Let A = {Example problems in notes/slides} and B = {Problems in exercises handouts}.

Then A ⊂ B
- Will share slides + possible exercise solutions at the end of each day
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Final notes before we begin Part II

- This is entirely for your benefit, so ask questions throughout!

- I intend to target the median background/exposure, BUT this is not intended to be an
exhaustive course in all you need to know for your G1 year

- Our math camp is intended to serve as a refresher
- I will provide references to texts that may be useful if you feel you need additional resources

on a given topic
- Importantly, your G1 coursework will build up from first principles

- I am not a math teacher

- I am just someone who has taken G1 coursework in microeconomics (Econ 2120a/b) and
econometrics (Econ 2120/2140)

- There will be things that I can’t immediately explain (well)
- I promise to follow up with an answer if I cannot immediately provide one

- Any questions?
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Some core concepts

- Unconstrained Optimization: Find the optimal level of one or more “choice variables”
that will either maximize or minimize the “objective function.”

- Constrained Optimization: Same thing, but we have one or more “constraints” that
impose limits on what value(s) our “choice variable(s)” can take.
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Constrained optimization examples

- Maximizing a utility function subject to a budget constraint (one equality constraint):

max
x ,y

U(x , y)

s.t. pxx + pyy = w .

The constraint is a 1-1 mapping between x and y , for a given px , py and w . It thus
reduces the dimensionality of the problem.

- Profit maximizing for a competitive firm (multiple inequality constraints):

max
x ,y

Π(x , y)

s.t. Π(x , y) ≥ 0, x ≥ 0, y ≥ 0
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Notation and general approach

- General notation:
max
x ,y

f (x , y)

s.t. g(x , y) = c

→ Sometimes we write this as an implicit equation.

- General approach:

- We work with differentiable functions and use techniques of calculus to solve for optima
- We will emphasize the use of first order conditions to identify interior optima for optimization

problems with equality constraints
- If time permits, we will discuss second order conditions, boundary solutions, and inequality

constraints at a high level, but these will be given an in depth treatment during the semester
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Solving constrained optimization problems: The substitution method

The general approach here is to convert a constrained optimization problem into an
unconstrained optimization problem:

1. Use the constraint to solve for one variable in terms of the other(s).

2. Substitute the expression from Step 1 into the objective function.

3. Solve this new unconstrained optimization problem as before:

- Take the first-order condition(s) to find the potential maxima or minima;
- Check the second-order condition(s) to verify what each candidate solution is; and
- Take the arg max(min) of the unconstrained function as the arg max(min) of the constrained

function.
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The substitution method: Example #1

max
x ,y

U(x , y) = 2x + 5 ln y

s.t. 6x + 3y = 51

We can simplify the constraint to 2x + y = 17, implying that 2x = 17− y .
This gives us U(x , y) = 17− y + 5 ln(y). We now maximize the one-variable problem, to give:

∂U

∂y
= −1 +

5

y
= 0 =⇒ y = 5

∂2U

∂y2
= − 5

y2
< 0, ∀y

=⇒ x = 6
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The substitution method: Example #2

min
a,b

C (a, b) = (3a− 7)2 + 4b

s.t. − 24a− 8b = −42

We can simplify the constraint to 4b = 21− 12a.
This gives us C = (3a− 7)2 + 21− 12a. We now minimize the one-variable problem, to give:

∂C

∂a
= 6(3a− 7)− 12 = 0 =⇒ a = 3

∂2C

∂a2
> 0, ∀a

=⇒ b =
21− 36

4
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Solving constrained optimization problems: The Lagrangian method

Consider the following setup: We have an objective function z = f (x , y) subject to the
constraint g(x , y) = c , where c ∈ R is a constant. To maximize f () subject to the constraint,
we have the following steps:

1. Introduce the Lagrange multiplier, λ, and rewrite the constraint with everything on one
side of the equation: g(x , y)− c = 0.

2. Create the Lagrangian function, a modified version of the objective function

L = f (x , y)− λ[g(x , y)− c ]

3. Solve this unconstrained optimization problem as usual, treating the Lagrange multiplier,
λ, as an additional variable.

4. Check your solution from Step 3 to determine if it’s a maximum or minimum.
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The Lagrangian method: Example #1
Example:

max
x ,y

U(x , y) = 2x + 5 ln y

s.t. 6x + 3y = 51

Write Lagrangian:
L = 2x + 5 ln y − λ(6x + 3y − 51)

First order conditions:

∂L
∂x

= 2− 6λ = 0

∂L
∂y

=
5

y
− 3λ = 0

∂L
∂λ

= 6x + 3y − 51 = 0

Solving the above system gives y = 5 and x = 6. We further have that λ = 1
3 .
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The Lagrangian method: Example #2
Example:

max
x ,y

f (x , y) = xy

s.t. x + 4y = 16

Write Lagrangian:
L = xy − λ(x + 4y − 16)

First order conditions:

∂L
∂x

= y − λ = 0

∂L
∂y

= x − 4λ = 0

∂L
∂λ

= x + 4y − 16 = 0

Solving the above system gives y = 2 and x = 8. We further have that λ = 2.
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Interpreting the Lagrange multiplier

- The Lagrange multiplier is often called the “shadow value” or “shadow price” of the
constraint

- It expresses how much the objective function changes if we “relax” the constraint a little
bit. Or, a measure of the sensitivity of the optimal value of the objective function to
changes in the constraint.

- Intuition: penalty on the objective function
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Economic interpretation

- Utility maximization: The Lagrange multiplier (when on a budget constraint) is
interpreted as the shadow price of wealth or the marginal utility of wealth

→ The change in utility that would result from an infinitesimal increase in wealth

- Profit maximization: The Lagrange multiplier (when on the cost function) for a particular
input is interpreted as the shadow price of that input

→ The change in profits that would result from an infinitesimal increase in use of that good
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Deriving an interpretation of λ

Consider the optimization problem,
max
x ,y

f (x , y)

s.t. h(x , y) = a

Show that,

λ∗(a) =
d

da
f (x∗(a), y ∗(a)),

where x∗ and y ∗ denote the values of x and y that maximize the objective function subject to
the constraint.2

2Hint: it may be useful to define the function F (a) = h(x?(a), y?(a))− a, and note that ∂F
∂a will always

equal zero.
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Deriving an interpretation of λ
Start with the R.H.S. and use the chain rule.

d

da
f (x∗(a), y ∗(a)) =

∂f

∂x∗
∂x∗

∂a
+

∂f

∂y ∗
∂y ∗

∂a

= λ
∂h

∂x∗
∂x∗

∂a
+ λ

∂h

∂y ∗
∂y ∗

∂a

= λ

(
∂h

∂x∗
∂x∗

∂a
+

∂h

∂y ∗
∂y ∗

∂a

)
= λ

(
∂h(x∗(a), y ∗(a))

∂a

)
= λ

where the last equality follows because h(x∗(a), y ∗(a)) = a =⇒ ∂h(x∗(a),y ∗(a))
∂a = 1.
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Inequality constraints

- Many problems in economics have either (1) non-binding constraints, or (2) the
possibility of corner solutions

- Examples of non-binding constraints include:

1. Non-negativity constraints on production inputs, e.g.:

min
x1,x2

C = (x1 − 4)2 + (x2 − 4)2

s.t.

2x1 + 3x2 ≥ 6

−3x1 − 2x2 ≥ −12

x1, x2 ≥ 0

2. Non-negativity constraints on firm profits.
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Inequality constraints
- Many problems in economics have either (1) non-binding constraints, or (2) the

possibility of corner solutions

- Examples of corner solutions include:
- Consumer demand for a subset of available goods;
- Production using a subset of available goods.
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Solving constrained optimization problems with inequality constraints

- In a lot of cases, the best way to deal with non-binding constraints is to solve the problem
ignoring the constraints and ex-post check that the solutions satisfy these constraints

- If the solutions do not satisfy these constraints, we can use Kuhn-Tucker conditions

→ Not covering today, but will introduce in microeconomics sequence and include a
supplemental section in the Part II notes covering Kuhn-Tucker conditions with a worked
example
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Sets

- A set is a collection of objects (often called elements). These objects may indeed be
numbers.

- Examples:

- In one-dimensional Euclidean space, a line segment or series of line segments:

(0, 1); {0, 1}; {(0, 1), 1, [1, 3)}

Note here how intervals are either defined as a set or an element in a set.
- This notion of sets applies to higher dimensional Euclidean space. Moreover, sets do not

have to contain elements in Euclidean space; here is a set with three objects, for example:

{red, white, blue}
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Application of sets: Level sets

- One (of many) ways in which sets and set notation
often comes up is in the context of level sets

- Used to study two fundamental functions of
microeconomics: production and utility functions

- Level sets provide an intuitive way of understanding
a function that maps from Rn → R1

- Describe all combinations of n inputs that produce
a given function value

- Example: simple Cobb-Douglas production function
Q = f (x , y) = x · y where x and y measure
amounts of two inputs and Q is output
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Convex sets

- A convex set in Euclidean space is a set ∈ Rn where the line segment joining any two
points in the set is contained entirely within the set.

- Algebraically, a set, call it C , is convex if and only if ∀t ∈ [0, 1], and ∀x , y ∈ C , we have
that

tx + (1− t)y ∈ C

- If a set C does not satisfy the above condition, we call it a non-convex set
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Convex sets
Examples:
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Concave and convex functions

- Concave function: A real-valued function f defined on a convex subset U ⊂ Rn is
concave if ∀x, y ∈ U and t ∈ [0, 1]

f (tx+ (1− t)y) ≥ tf (x) + (1− t)f (y)

- Convex function: A real-valued function g defined on a convex subset U ⊂ Rn is convex
if ∀x, y ∈ U and t ∈ [0, 1]

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y)

26 / 49



Concave and convex functions
- Standard approach you’ve likely seen: can tell whether or not a function on Rn is concave

by looking at its graph in Rn+1

- This is challenging in higher dimensions! Thus, we have the calculus criteria, which you’re
likely familiar with in the single dimension case:

- Let f be a C1 function on a convex subset U of Rn. Then f is concave on u iff forall
x, y ∈ U : f (y)− f (x) ≤ Df (x)(y− x)

- Given their appeal for higher order problems (easy to graph for f : R2 → R) and their
nice economic intuition, we will often work with level sets =⇒ develop a
definition/intuition for concavity/convexity by looking at a function’s level set

- Let f be a function defined on a convex set U ⊂ Rn. If f is concave then for every
x0 ∈ U, the set

C+
x0 ≡ {x ∈ U : f (x) ≥ f (x0)}

is a convex set
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Concave and convex functions
Example: is the function z = f (x , y) = x2 + y2 concave or convex?

−1 −0.5

0.5
1

−1

10.5

1

1.5

2

x

y

z

What if we look at the level set with z = 4?
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Properties of concave and convex functions

Why do we care about concavity/convexity?

- Let f be a concave (convex) function defined on U ⊂ Rn. If x∗ is a critical point of f
then x∗ ∈ U is a global maximizer (minimizer) of f on U.

- Let f1, ..., fk be concave (convex) functions each defined on the same subset U ⊂ Rn and
let a1, ..., ak > 0. Then a1f1 + ... + ak fk is a concave (convex) function on U.
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Concave functions in economics

- Expenditure and cost functions are concave

- Expenditure function:

e(p, u) = min{p1x1 + ... + pnxn : u(x) ≥ u}

- Cost function:
c(w , y) = min{w1x1 + ... + wnxn : g(x) = y}

- Properties of concave (convex) functions are very useful; however, concave functions have
a clear downside in economic analysis: concavity is a cardinal property

→ It depends on the numbers which the function assigns to the level sets, not just on the shape
of the level sets

→ In other words, a monotonic transformation of a concave function need not be concave
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Monotonic transformations
- We typically apply monotonic transformations to convert difficult-to-analyze functions

into easy-to-analyze functions with exactly the same optima
→ Also related to ordinal vs. cardinal distinction

- A positive (negative) monotonic function is a function that increases (decreases)
throughout its domain

- A positive (negative) monotonic function can be either strictly increasing (decreasing) or
non-decreasing (non-increasing)

- Algebraically, a non-decreasing monotonic function has the property that ∀x , y such that
x ≤ y ⇒ f (x) ≤ f (y) (reverse for non-increasing monotonic function)

- Replacing these inequalities with strict inequalities yields the definition of a strictly increasing
monotonic function

- A monotonic transformation is achieved by plugging the function you want to analyze
into any monotonic function of your choice

- Key result: Any monotonic transformation of a function has the same optima as the
original function!
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Monotonic transformations: Economic application
Example: The Cobb-Douglas utility function has the form

u(x1, x2) = xα
1 x

1−α
2 .

Check that by taking the natural log of the function (i.e. take ln (u(x1, x2))), the optima of
the two functions are the same under the constraint x1 + x2 ≤ 100.
Lagrangian with the monotonic transformation:

L = α ln(x1) + (1− α) ln(x2)− λ(x1 + x2 − 100)

First order conditions:

∂L
∂x

=
α

x1
− λ = 0

∂L
∂y

=
1− α

x2
− λ = 0

∂L
∂λ

= −(x1 + x2 − 100) = 0

Solving gives x1 = 100α, x2 = 100(1− α) and λ = 1
100
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Monotonic transformations: Economic application
Example: The Cobb-Douglas utility function has the form

u(x1, x2) = xα
1 x

1−α
2 .

Check that by taking the natural log of the function (i.e. take ln (u(x1, x2))), the optima of
the two functions are the same under the constraint x1 + x2 ≤ 100.
Lagrangian without the monotonic transformation:

L = xα
1 x

1−α
2 − λ(x1 + x2 − 100)

First order conditions:

∂L
∂x

= αxα−1
1 x1−α

2 − λ = 0
∂L
∂y

= −(α− 1)xα
1 x
−α
2 − λ = 0

∂L
∂λ

= −(x1 + x2 − 100) = 0 x1 + x2 ≤ 100

Messy!
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Monotonic transformations: Econometric application

Example: The likelihood function takes the form,

L(θ|x) =
n
Π
i=1

f (xi |θ),

and the loglikelihood takes the form

`(θ|x) = log
n
Π
i=1

f (xi |θ) =
n

∑
i=1

log f (xi |θ).

Quite useful: is useful multiplying small values makes very small values, and differentiation is
easier when the function is additive
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Monotonic transformations: Another example!

Test yourself again:
max
x1,x2

f (x) = e
√
x1x2 s.t. x1 + 4x2 = 16.

Lagrangian without monotonic transformation:

L = e
√
x1x2 − λ(x1 + 4x2 − 16)

versus Lagrangian with monotonic transformation ln(f (x)):

L =
√
x1x2 − λ(x1 + 4x2 − 16)

One is way easier than the other!
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Cardinal vs. ordinal

- A characteristic of functions is called ordinal if every monotonic transformation of a
function with this characteristic still has this characteristic

- Cardinal properties are not preserved by monotonic transformations

- Importantly, utility is an ordinal concept

- For example, let u(x , y) ∈ R2
+ be a utility function and let v(x , y) = u(x , y) + 1 be another

utility function ⇒ same set of indifference curves ⇒ same preferences
- Concavity/convexity desirable properties not applicable when working with utility functions

because they are cardinal
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Where are we going?

- Concave functions have one fundamental ordinal property: their level sets bound convex
sets from below

- It turns out that this property is quite useful and we define a class of functions which
have this desired ordinal property of concave functions: quasiconcave (quasiconvex)

- Final definition before introducing quasiconcavity/quasiconvexity: let f be a function
defined on the subset S ⊂ Rn

- Upper level set: for any a ∈ R

P+
a ≡ {x ∈ S : f (x) ≥ a}

- Lower level set: for any a ∈ R

P−a ≡ {x ∈ S : f (x) ≤ a}
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Quasiconcavity

- The function f of many variables defined on a convex set S is quasiconcave if every
upper level set of f is convex

- That is, P+
a = {x ∈ S : f (x) ≥ a} is convex for every value of a

- We also have an equivalent algebraic representation: A function f is quasiconcave if and
only if, for every pair of distinct points u and v in the domain of f , and for θ ∈ (0, 1),

f (v) ≥ f (u) =⇒ f (θu + (1− θ)v) ≥ f (u).

- If the second inequality is strict, then f is strictly quasiconcave.
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Quasiconvexity

- The function f of many variables defined on a convex set S is quasiconvex if every lower
level set of f is convex

- That is, P−a = {x ∈ S : f (x) ≤ a} is convex for every value of a
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Checking quasiconvexity and quasiconcavity

- To see whether a function is quasiconcave or quasiconvex one can examine the level sets
of the function directly

- Alternatively if the function is differentiable (twice differentiable in one case), two helpful
propositions can determine quasi-concavity and quasiconvexity.3. We present them in the
supplementary section on optimization, since they do not provide much intuition and
require material from later chapters of these notes.

3For more information, see Osborne, chapter 3.4 and the cites therein.
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Useful properties of quasiconcavity/quasiconvexity

Unlike concavity and convexity, quasi-concavity and quasi-convexity retain their properties of
quasiconcavity/quasiconvexity when they are monotonically transformed, which is a useful
property for certain objective functions (utility functions) to have

Properties:

- Every concave (convex) function is quasiconcave (quasiconvex)

- The converse is not necessarily true

- If f (x) is quasiconcave, then −f (x) is quasiconvex

- Any monotonic transformation of a quasiconcave (quasiconvex) function is also
quasiconcave (quasiconvex).
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Key result

- Knowing whether a function is strictly quasiconcave or strictly quasiconvex implies that
any local optima are also global optima

- There is thus no need to check second-order conditions if f (x) is strictly quasiconcave or
strictly quasiconvex, for finding the FOC of a strictly quasiconcave (strictly quasiconvex)
function finds a global maximum (minimum)

- Strictly quasiconcave =⇒ local optimum = global maximum

- Strictly quasiconvex =⇒ local optimum = global minimum
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Quasiconcavity/quasiconvexity example
Example: Find the extremum of

f (x1, x2) = x21 + x22

subject to,
x1 + 4x2 = 2.

x1, x2 ≥ 0
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Quasiconcavity/quasiconvexity example
Example: Find the extremum of

f (x1, x2) = x21 + x22

subject to,
x1 + 4x2 = 2.

x1, x2 ≥ 0

Level sets are strictly quasiconvex =⇒ optimum is a global minimum. The Lagrangian is

L = x21 + x22 − λ(x1 + 4x2 − 2)

The FOCs are

∂L
∂x1

= 2x1 − λ = 0
∂L
∂x2

= 2x2 − 4λ = 0

∂L
∂λ

= x1 + 4x2 − 2 = 0

The first two equations give us x1 =
x2
4 , and substituting this into the third equation we get

x2 =
8
17 and x1 =

8
4·17 , with λ = 4

4·17 .
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Constrained optimization with multiple constraints

This is identical to the case with a single constraint, aside from adding an additional Lagrange
multiplier for each constraint. Note though, you can still substitute in constraints where
possible.
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Constrained optimization with multiple constraints

Consider an objective function z = f (x , y) subject to two constraints, g(x , y) = c and
h(x , y) = d :

1. Introduce two Lagrange multipliers, λ1 and λ2, one for each constraint;

2. Rewrite each constraint with everything on one side of the equation:

g(x , y)− c = 0 and h(x , y)− d = 0

3. Create the Lagrangian function, a modified version of the objective function:

L = f (x , y)− λ1 [g(x , y)− c ]− λ2 [h(x , y)− d ]

4. Solve this unconstrained optimization problem as usual, treating the Lagrange multipliers,
λ1 and λ2, as additional variables.

5. Check your solution from Step 4 to determine if it’s a maximum or minimum. You can
use the bordered Hessian approach outlined in Simon and Blume, chapter 19.
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Constrained optimization with multiple constraints: Example
Example:
Find the extremum of z = x2 + 2xy + yw2 subject to

2x + y + w2 = 24

and
x + w = 8.

The Langrangian is

L = x2 + 2xy + yw2 − λ(2x + y + w2 − 24)− µ(x + w − 8)

The FOCs are:

∂L
∂x

= 2x + 2y − 2λ− µ = 0
∂L
∂y

= 2x + w2 − λ = 0

∂L
∂w

= 2yw − 2λw − µ = 0
∂L
∂λ

= 2x + y + w2 − 24 = 0

∂L
∂µ

= x + w − 8 = 0
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Key takeaways

- Know solution methods (Lagrangian) for constrained optimization problem with
single/multiple equality/inequality constraints

- Be familiar with sets/set notation, level sets, definition of convex/non-convex sets

- Be familiar with quasiconcavity/quasiconvexity and the implications for constrained
optimization
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Additional resources

- Chiang and Wainwright, chapter 12

- Simon and Blume, chapters 18-19, 21

- Martin Osborne’s economic math website.

49 / 49

https://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/toc
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