The Acid Rain Program: Background, Impacts, and Lessons for Climate Change Policy

> Jacob Bradt Section 8 ECON 1661 / API-135: Spring 2022

> > March 25, 2022

- Office hours today from 3:00-5:00pm EDT
- Problem set #3 due next Wednesday, March 30 at 12:00pm EDT
- Midterm grades and solutions posted

Climate Policy and Correlated Air Pollutants

Acid Rain Program

Hybrid Policy Instruments

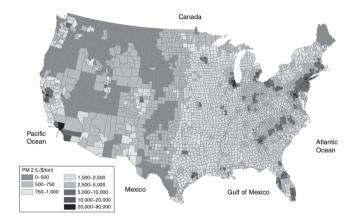
Climate Policy and Correlated Air Pollutants

Acid Rain Program

Hybrid Policy Instruments

Correlated air pollutants

- GHG emissions from many sources are associated with a number of co-pollutants:
 - Burning of fossil fuels generates other pollutants in addition to GHGs
 - E.g., burning of coal \rightarrow GHGs + SO₂, NO_x, and PM
- This has major implications for the economic analysis of climate policy \rightarrow E.g., "Clean Power Plan" rule: 94% of domestic and 59% of global annual benefits in 2030
- Natural question: should we think about climate policy and air quality regulation separately?


Review: cost-effectiveness vs. efficiency

- Cost-effectiveness: conditional on the level of abatement, is the allocation of abatement across firms cost-minimizing?

 \rightarrow Necessary condition: $MC_1 = MC_2 = \cdots = MC_n$

- Efficiency: is the level of abatement net benefit maximizing?
 - \rightarrow Necessary conditions: $MC_i = MB_i$ (marginal cost of abatement equals the marginal benefit of abatement across all sources)
 - Standard case so far: $MB_i = MB$ for all firms *i*
 - Efficiency implies that MC will be equalized across all sources and we can think of MB=MC as determining the optimal level of control
- But what if *MB_i* is not constant or known across firms?
 - Example where MB_i constant: CO_2 emissions
 - Example where MB_i not constant: local air pollutants (e.g., SO₂, NO_x, PM)

Benefit heterogeneity: PM_{2.5} emissions¹

 Benefits of PM_{2.5} reductions (avoided marginal damages) concentrated in northeast, southern California, Chicago

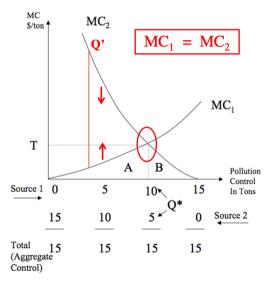
- Drivers of benefit heterogeneity:
 - Population exposure differences
 - Nonlinearities in dose-response function

¹Muller, N. Z. and R. Mendelsohn. 2009. "Efficient Pollution Regulation: Getting the Prices Right." American Economic Review, 99(5):1714-39.

Implications for climate policy and air quality regulations

- Should we jointly regulate GHG emissions and local air pollutants?
- Marginal benefit of CO_2 abatement known and constant: Social Cost of Carbon
 - \rightarrow Efficient policy design feasible in theory: set policy such that $MC_i = SCC$ for all firms i
- Joint regulation \rightarrow MB_i no longer constant (and "easily" known) across firms
 - Potential argument for separate regulation: we can design a fast train to the *right* station, at least with climate policy
 - Tinbergen (1952, 1956): efficient policymaking requires separate policy instruments to correct for separate market failures
 - Muller (2012)²: economic cost of setting the wrong aggregate emission reduction target when jointly regulating GHG emissions and co-pollutants can be large!
- Need to be careful about interactions between policies, though more on this in the next few weeks!

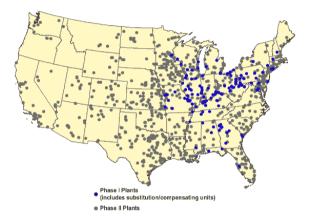
²Muller, N.Z. 2012. "The design of optimal climate policy with air pollution co-benefits." *Resource and Energy Economics*, 34(4): 696-722.



Climate Policy and Correlated Air Pollutants

Acid Rain Program

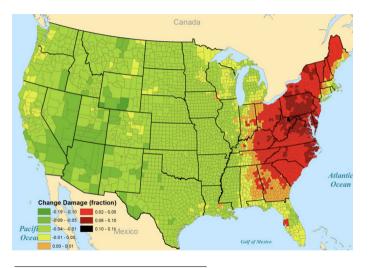
Hybrid Policy Instruments


Review: cap-and-trade logic

- Simple two-source model (but generalizes to *N* firms!)
 - Importantly, firms have different MC
- Incentives to trade:
 - Firm 1 will sell permits (control more) at price $> MC_1$
 - Firm 2 will buy permits (control less) at price < MC₂
- Key intuition: under C&T, firms will trade such that permit price = marginal cost of abatement

- As early as Dales (1968), economists have discussed the tradable permit approach and its potential to achieve cost-effectiveness
- Up until the Acid Rain Program, however, market-based approaches had attracted hostility from non-economists and were rarely employed in practice
- The Acid Rain Program, or Title IV of the CAAA 1990, is an important, real world experiment in market-based environment policy

CAAA 1990: Title IV

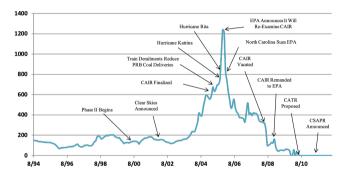

- Phase I (1995-1999): covered the 263 most SO₂ emissions-intensive sources
- Phase II (2000-): covers virtually all fossil fuel boilers in U.S.
- Tradeable permit program
 - Cap not set to maximize net benefits
 - Permit allocation: not auctioned

Economic costs of ARP: Chan et al. $(2018)^3$

- Quantify cost savings from ARP by comparing compliance costs for 761 coal-fired generators under ARP with those from a counterfactual uniform performance standard
- Estimate compliance costs in 2002 are \$200M lower under ARP than analogous counterfactual uniform standard
- Health damages in 2002 are \$170M lower under the ARP
- ARP appears to be cost-effective given the target

³Chan, H.R., B.A. Chupp, M.L. Cropper and N.Z. Muller. 2018. "The impact of trading on the costs and benefits of the Acid Rain Program." *Journal of Environmental Economics and Management*, 88: 180-209.

Effect of trading: Chan et al. $(2018)^4$



- Also compare health damages associated with ARP with a no-trade scenario
- Damages under the ARP are \$2.1B higher than under the no-trade scenario
- Driven by transfer of allowance from low MC units in western US to high MC units in the eastern US

- Fast trains, wrong station?

⁴Chan, H.R., B.A. Chupp, M.L. Cropper and N.Z. Muller. 2018. "The impact of trading on the costs and benefits of the Acid Rain Program." *Journal of Environmental Economics and Management*, 88: 180-209.

SO₂ allowance prices

- Substantial price volatility in SO₂ allowance market
- Driven by changes in policy, natural disasters, business cycle, litigation, etc.
- Volatility affects firm decision-making (e.g., investment decisions)

How can we design a tradeable permit system to reduce volatility?

Climate Policy and Correlated Air Pollutants

Acid Rain Program

Hybrid Policy Instruments

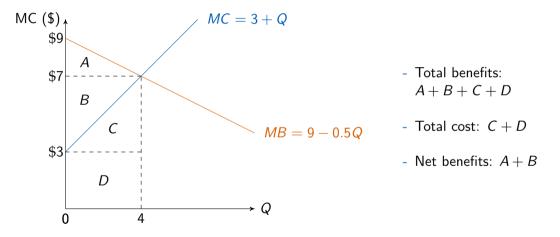
Hybrid policy instruments

- Definition: a hybrid or "safety-valve" policy instrument refers to a combined cap-and-trade and tax system
- Price ceiling: government can announce in advance that it is willing to sell (an unlimited number of) additional allowances at a specific price (the "trigger" price)
- Price floor: government can announce it will buy allowances at a specific price or set a minimum allowance price at auctions
- Combination of a price ceiling and price floor creates a "price collar" \implies limits the volatility of permit prices
 - As the difference between the price ceiling and price floor goes to zero, the cap-and-trade system becomes a tax

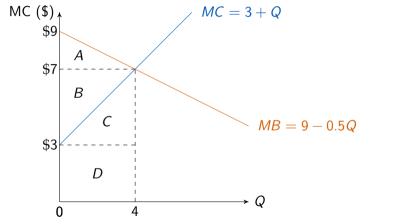
The EPA wants to reduce emissions of CO_2 , which is currently unregulated. Economists estimate that the marginal costs and benefits of pollution control are as follows:

$$MC = 3 + Q$$
 $MB = 9 - 0.5Q$

where Q is the quantity of CO_2 emissions reductions. Calculate the efficient level of emissions reductions, Q^* , and the marginal cost of emissions reductions at this level, P^* .


- Equating MC and MB and simplifying gives:

$$3 + Q^* = 9 - 0.5Q^* \Longrightarrow Q^* = 4$$


- The cost of emissions reductions, P^* at $Q^* = 4$ can be found by plugging Q^* into MC:

$$P^* = MC(4) = 3 + (4) \Longrightarrow P^* =$$
\$7

What are the net benefits of setting the efficient policy?

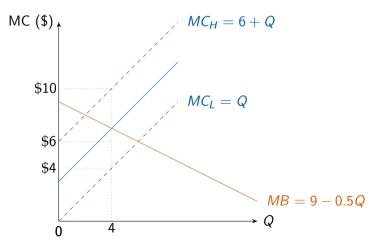
What are the net benefits of setting the efficient policy?

- Total benefits: $\frac{1}{2}(9-7)(4) + (7*4) = 32$

- Total cost: $\frac{1}{2}(7-3)(4) + (3*4) = 20$

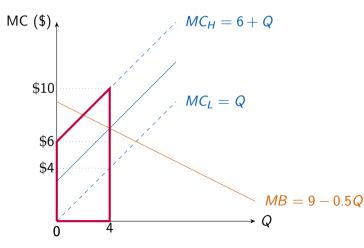
- Net benefits: 32 - 20 = 12

It turns out that the estimated marginal cost function is an average of two competing reports: a high cost estimate and a low-cost estimate:

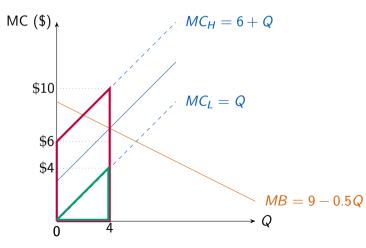

$$MC_H = 6 + Q$$
 $MC_L = Q$

Given this uncertainty, would you recommend that the regulator use a price or a quantity instrument to regulate emissions?

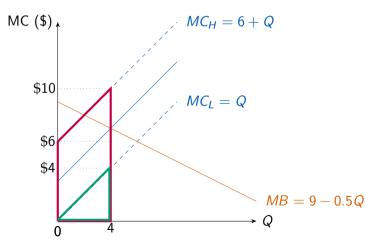
- We can use the Weitzman rule!
- We would recommend a price instrument, because the slope of the marginal cost curve is greater than the absolute value of the slope of the marginal benefits curve:


$$|slope_{MC}| = 1 > 0.5 = |slope_{MB}|$$

The regulator chooses to use a quantity instrument, mandating emissions reductions equal to the efficient level, Q^* . Calculate the expected net benefits of this policy (assume that there is a 50% chance of each cost curve, high or low).


- Gross benefits do not change: MB unchanged and regulators still set $Q^* = 4$ as the cap

The regulator chooses to use a quantity instrument, mandating emissions reductions equal to the efficient level, Q^* . Calculate the expected net benefits of this policy (assume that there is a 50% chance of each cost curve, high or low).


- Gross benefits do not change: MB unchanged and regulators still set $Q^* = 4$ as the cap
- If MC_H realized, total cost: $\frac{1}{2}(10-6)(4) + (6*4) = 32$

The regulator chooses to use a quantity instrument, mandating emissions reductions equal to the efficient level, Q^* . Calculate the expected net benefits of this policy (assume that there is a 50% chance of each cost curve, high or low).

- Gross benefits do not change: MB unchanged and regulators still set $Q^* = 4$ as the cap
- If MC_H realized, total cost: $\frac{1}{2}(10-6)(4) + (6*4) = 32$
- If MC_L realized, total cost: $\frac{1}{2}(4-0)(4) = 8$

The regulator chooses to use a quantity instrument, mandating emissions reductions equal to the efficient level, Q^* . Calculate the expected net benefits of this policy (assume that there is a 50% chance of each cost curve, high or low).

Net benefits are zero if MC_H is realized and 24 if MC_L is realized, so expected net benefits are:

0 * 0.5 + 24 * 0.5 = 12

Industry is concerned about price spikes if emission reductions turn out to be expensive. To allay their fears, the regulator writes a "safety valve" into the law: specifically, treasury agrees to sell an unlimited number of permits at \$8. Calculate the expected emissions reductions and the expected net benefits with the safety valve.

- When $MC = MC_L = Q$, the market permit price at Q = 4 will be 4
 - Since this is below 8, there will be no demand for the treasury's additional permits and the net benefit remains the same as previously calculated: 24
- When $MC = MC_H = 6 + Q$, the market permit price at Q = 4 is 10
 - This is greater than the safety valve price; firms will abate until MC = 8, after which they buy permits from the treasury to meet the Q = 4 cap
- MC = 8 when Q = 2, so 2 units will be abated
 - Gross benefits when Q = 2 will be: $\frac{1}{2}(9-8)(2) + (2*8) = 17$
 - The cost will be: $\frac{1}{2}(8-6)(2) + (2*6) = 14$
 - So the net benefits are 3

Industry is concerned about price spikes if emission reductions turn out to be expensive. To allay their fears, the regulator writes a "safety valve" into the law: specifically, treasury agrees to sell an unlimited number of permits at \$8. Calculate the expected emissions reductions and the expected net benefits with the safety valve.

- The expected emissions reductions is just the probability-weighted sum of the emissions reductions in each case: 0.5(4) + 0.5(2) = 3
- The expected net benefits is the probability-weighted sum of the net benefits in each case: 0.5(24) + 0.5(3) = 13.5
- The expected net benefit is larger than 12, which was the expected net benefit without the safety valve!

- Reductions in correlated air pollutants are an important ancillary benefit to climate policy, but there may be reasons to regulate separately
- The Acid Rain Program is a great example of a market-based policy in action
- ARP offers a number of important takeaways; two in particular (see lecture for others):
 - 1. It may have been cost-effective, but welfare loss from inefficiency plausibly large
 - 2. Hybrid policy features that address price volatility can improve outcomes