Complementarities and Optimal Targeting of Technology Subsidies

Jacob Bradt Frank Pinter* jacob.bradt@austin.utexas.edu frank@frankpinter.com The University of Texas at Austin Federal Trade Commission

> IIOC 2025 May 3, 2025

^{*}The views expressed in this presentation are those of the authors and do not necessarily reflect those of the Federal Trade Commission or any individual Commissioner.

Substantial overlap in public funding for solar, PEV adoption

Sources: Lawrence Berkeley National Lab (LBNL), US Department of Energy (DOE)

Substantial overlap in public funding for solar, PEV adoption

Evolution of US PV and ZEV Policy

Sources: Lawrence Berkeley National Lab (LBNL), US Department of Energy (DOE)

But what if solar, PEVs are complementary goods?

- 1. Technology complementarity: Low marginal fuel costs
 - Depends on consumption/charging behavior, PV output
- 2. Policy complementarity: Net-metering
 - Excess solar generation can "roll back the meter"
- 3. Correlated preferences:
 - Unobservable preference for "green" goods

- Research question: What are the implications of complementarities for policy design?
 - $\rightarrow\,$ What are the efficiency costs of overlapping incentive programs?
 - $\rightarrow\,$ What are the equity implications of potentially sub-optimal targeting?

- Research question: What are the implications of complementarities for policy design?
 - $\rightarrow\,$ What are the efficiency costs of overlapping incentive programs? $\longleftarrow\,$ Today
 - $\rightarrow\,$ What are the equity implications of potentially sub-optimal targeting? $\longleftarrow\,$ Future

- Research question: What are the implications of complementarities for policy design?
 - $\rightarrow\,$ What are the efficiency costs of overlapping incentive programs? $\longleftarrow\,$ Today
 - $\rightarrow\,$ What are the equity implications of potentially sub-optimal targeting? $\longleftarrow\,$ Future
- Application: Residential solar and PEV markets in California (CA)

- Research question: What are the implications of complementarities for policy design?
 - $\rightarrow\,$ What are the efficiency costs of overlapping incentive programs? $\longleftarrow\,$ Today
 - $\rightarrow\,$ What are the equity implications of potentially sub-optimal targeting? $\longleftarrow\,$ Future
- Application: Residential solar and PEV markets in California (CA)
- Today:
 - 1. Provide empirical evidence of existing complementarity between PV and PEV adoption in CA
 - 2. Develop model of optimal second-best policies with complementary, clean goods
 - ightarrow Independent Pigouvian subsidies are sub-optimal
 - 3. Find evidence of likely welfare losses from observed overlapping policy regime in CA

Related literature

- Public finance and optimal taxation
 - Fenichel and Horan, 2016; Samuelson, 1974; Sandmo, 1975; Theil, 1956; Tinbergen, 1952; Wijkander, 1985 . . .

Related literature

- Public finance and optimal taxation

- Fenichel and Horan, 2016; Samuelson, 1974; Sandmo, 1975; Theil, 1956; Tinbergen, 1952; Wijkander, 1985 . . .

- Product complementarities

- Bollinger et al., 2023; Crawford and Yurukoglu, 2012; Crawford et al., 2018; Dubé, 2004; Gentzkow, 2007; Grzybowski and Verboven, 2016; Hendel, 1999; Hicks and Allen, 1934; Iaria and Wang, 2020; Kwak et al., 2015; Lee et al., 2013; Liu et al., 2010; Manski and Sherman, 1980; Nevo et al., 2005 . . .

Related literature

- Public finance and optimal taxation

- Fenichel and Horan, 2016; Samuelson, 1974; Sandmo, 1975; Theil, 1956; Tinbergen, 1952; Wijkander, 1985 . . .

- Product complementarities

- Bollinger et al., 2023; Crawford and Yurukoglu, 2012; Crawford et al., 2018; Dubé, 2004; Gentzkow, 2007; Grzybowski and Verboven, 2016; Hendel, 1999; Hicks and Allen, 1934; Iaria and Wang, 2020; Kwak et al., 2015; Lee et al., 2013; Liu et al., 2010; Manski and Sherman, 1980; Nevo et al., 2005 . . .
- Economics of clean technologies and solar/PEV subsidies
 - Borenstein, 2017; De Groote and Verboven, 2019; Gillingham and Tsvetanov, 2019; Lyu, 2023; E. Muehlegger and Rapson, 2022; E. J. Muehlegger and Rapson, 2023 ...

Outline

Data and Descriptives

Are Solar and PEV's Complements? A Basic Model of Co-adoption

Implications: A Model of Optimal Second Best Subsidies

Optimal versus Observed Subsidy Policies in CA

Next Steps

Outline

Data and Descriptives

Are Solar and PEV's Complements? A Basic Model of Co-adoption

Implications: A Model of Optimal Second Best Subsidies

Optimal versus Observed Subsidy Policies in CA

Next Steps

Setting: Solar and EV adoption in California

- CA: Largest market for residential PV and EV in US
- Substantial state-level subsidies:
 - PV: California Solar Initiative (2007-2013)
 - EV: Clean Vehicle Rebate Project (2009-2023)

Sources: Lawrence Berkeley National Lab (LBNL), CA Energy Commission (CEC))

- Lawrence Berkeley National Lab \longrightarrow Solar installation microdata (2000-2020)

Data

- Lawrence Berkeley National Lab \longrightarrow Solar installation microdata (2000-2020)
- California Energy Commission \longrightarrow ZEV (micro-)data (1998-2023)
 - New ZEV sales data (1998-2023)
 - Light-duty vehicle population (2010-2023)
 - California Vehicles Surveys (2017 and 2019)

Data

- Lawrence Berkeley National Lab \longrightarrow Solar installation microdata (2000-2020)
- California Energy Commission \longrightarrow ZEV (micro-)data (1998-2023)
 - New ZEV sales data (1998-2023)
 - Light-duty vehicle population (2010-2023)
 - California Vehicles Surveys (2017 and 2019)
- Center for Sustainable Energy \longrightarrow California ZEV rebate data (2010-2023)

Data

- Lawrence Berkeley National Lab \longrightarrow Solar installation microdata (2000-2020)
- California Energy Commission \longrightarrow ZEV (micro-)data (1998-2023)
 - New ZEV sales data (1998-2023)
 - Light-duty vehicle population (2010-2023)
 - California Vehicles Surveys (2017 and 2019)
- Center for Sustainable Energy \longrightarrow California ZEV rebate data (2010-2023)
- California Public Utilities Commission —> California solar PV rebate data (2007-2013)

Fact #1: Adoption \uparrow w/ income

Respondent Share

Source: California Energy Commission, CA Vehicle Survey

Fact #2: ZEV adoption $\uparrow 4 \times$ among PV households

Respondent ZEV Share

Fact #3: Stocks and flows are correlated

New Solar Installations (residualized)

Regressions PV policy variation ZEV policy variation Full results (PV) Full results (ZEV)

Outline

Data and Descriptives

Are Solar and PEV's Complements? A Basic Model of Co-adoption

Implications: A Model of Optimal Second Best Subsidies

Optimal versus Observed Subsidy Policies in CA

Next Steps

Need to recover cross-elasticities

- Complementary goods \iff positive compensated cross-price elasticities of demand
- Relationship between adoption levels:
 - 1. Does not define complementarity
 - 2. Is not a sufficient statistic for welfare

Need to recover cross-elasticities

- Complementary goods \iff positive compensated cross-price elasticities of demand
- Relationship between adoption levels:
 - 1. Does not define complementarity
 - 2. Is not a sufficient statistic for welfare
- Estimate a model of vehicle and solar co-adoption with complementarity following Gentzkow (2007) w/ data from CA Vehicle Surveys
 - $\rightarrow~$ Find positive cross-price elasticities for PV and PEV

Need to recover cross-elasticities

- Complementary goods \iff positive compensated cross-price elasticities of demand
- Relationship between adoption levels:
 - 1. Does not define complementarity
 - 2. Is not a sufficient statistic for welfare
- Estimate a model of vehicle and solar co-adoption with complementarity following Gentzkow (2007) w/ data from CA Vehicle Surveys
 - $\rightarrow~$ Find positive cross-price elasticities for PV and PEV
- Limitations:
 - For vehicle adoption decision, use choice experiment with no outside option
 - Source(s) of potential complementarity?
 - Dynamics!

California Vehicle Surveys (2013, 2017)

- Random survey of nearly 7,000 CA households
- Includes data on solar adoption
 - $\rightarrow\,$ Combine with LBNL/CPUC data on solar prices, rebates
- Use vehicle choice experiment with randomized prices, attributes (e.g., fuel type), and policies
- Choice set: 4 vehicles (combination of PEVs/ICEs), each with a solar/no-solar alternative

- Follow static discrete choice model of Gentzkow, 2007
- Individual *i*'s indirect utility from consuming goods *j* in bundle *b* (i.e., $j \in b$) is

$$u_{ib} = \sum_{j \in b} \bar{u}_{ij} + \Gamma_b + \varepsilon_{ib}$$

where

- Follow static discrete choice model of Gentzkow, 2007
- Individual *i*'s indirect utility from consuming goods *j* in bundle *b* (i.e., $j \in b$) is

$$u_{ib} = \sum_{j \in b} \bar{u}_{ij} + \Gamma_b + \varepsilon_{ib}$$

where

- $\bar{u}_{ij} = \alpha(p_j - r_j) + \theta' X_{ij} + \xi_j$

- Follow static discrete choice model of Gentzkow, 2007
- Individual *i*'s indirect utility from consuming goods *j* in bundle *b* (i.e., $j \in b$) is

$$u_{ib} = \sum_{j \in b} \bar{u}_{ij} + \Gamma_b + \varepsilon_{ib}$$

where

$$- \ \bar{u}_{ij} = \alpha(p_j - r_j) + \theta' X_{ij} + \xi$$
$$- \ \Gamma_b = \begin{cases} 0 & \text{if } |b| = 1\\ \Gamma_b & \text{otherwise} \end{cases}$$

- Follow static discrete choice model of Gentzkow, 2007
- Individual *i*'s indirect utility from consuming goods *j* in bundle *b* (i.e., $j \in b$) is

$$u_{ib} = \sum_{j \in b} \bar{u}_{ij} + \Gamma_b + \varepsilon_{ib}$$

where

- $\bar{u}_{ij} = \alpha(p_j r_j) + \theta' X_{ij} + \xi_j$ - $\Gamma_b = \begin{cases} 0 & \text{if } |b| = 1 \\ \Gamma_b & \text{otherwise} \end{cases}$
- $\varepsilon_{ib} \stackrel{\text{i.i.d.}}{\sim} T1EV$ bundle-specific preference shock

- Follow static discrete choice model of Gentzkow, 2007
- Individual *i*'s indirect utility from consuming goods *j* in bundle *b* (i.e., $j \in b$) is

$$u_{ib} = \sum_{j \in b} \alpha(p_j - r_j) + \theta' X_{ij} + \xi_j + \Gamma_b + \varepsilon_{ib}$$

- Identification:
 - α identified from experimental variation in vehicle prices/rebates + variation in PV rebates
 - Γ_b identified from inclusion of 'controls' X_{ij} which only shift utility of adoption for one technology (e.g., HOV lane access, solar irradiance)

Solar PV and PEVs are complements: $\Gamma > 0$ (Gentzkow, 2007)

	Estimate (SE)		Estimate (SE)
Common Parameters		Vehicle Attributes	
(Price – Subsidy) / Income	-1.904 (0.033)	Acceleration Rate	-0.060 (0.002)
Complementarity Term (Γ)	0.771 (0.030)	Fueling Time	-0.139 (0.004)
		Fuel Cost/Mile	-0.047(0.015)
Solar PV Attributes		Miles/Gallon	0.391 (0.018)
1 {Solar PV}	-6.374 (0.404)	Range	0.533 (0.012)
Solar Radiation	0.058 (0.018)	Trunk Space	0.198 (0.013)
Module Efficiency	0.205 (0.012)	Vehicle Age	-0.037 (0.004)
		1 {Small Car}	-0.157(0.015)
Income Interactions		1{SUV}	-0.039(0.022)
$Income \times 1{PEV}$	0.028 (0.002)	1 {Truck}	-0.692(0.024)
Income $\times 1$ {Solar PV}	0.015 (0.002)	1 {Van} Í	-1.280(0.036)
		1 {PEV}	-0.213 (0.032)
		1 {Hybrid}	0.130 (0.014)
Log Likelihood	-85 665.49		
Individuals	6754		
Choices		54 0 32	

Solar PV and PEVs are complements: $\Gamma > 0$ (Gentzkow, 2007)

	Estimate (SE)		Estimate (SE)
Common Parameters		Vehicle Attributes	
(Price – Subsidy) / Income	-1.904 (0.033)	Acceleration Rate	-0.060 (0.002)
Complementarity Term (Γ)	0.771 (0.030)	Fueling Time	-0.139 (0.004)
		Fuel Cost/Mile	-0.047 (0.015)
Solar PV Attributes		Miles/Gallon	0.391 (0.018)
1 {Solar PV}	-6.374 (0.404)	Range	0.533 (0.012)
Solar Radiation	0.058 (0.018)	Trunk Space	0.198 (0.013)
Module Efficiency	0.205 (0.012)	Vehicle Age	-0.037 (0.004)
		1 {Small Car}	-0.157 (0.015)
Income Interactions		1{SUV}	-0.039 (0.022)
$Income \times 1{PEV}$	0.028 (0.002)	1 {Truck}	-0.692 (0.024)
Income $\times 1$ {Solar PV}	0.015 (0.002)	1 {Van}	-1.280(0.036)
		1 {PEV}	-0.213 (0.032)
		1 {Hybrid}	0.130 (0.014)
Log Likelihood	-85 665.49		
Individuals	6754		
Choices		54 032	

Positive cross-price elasticities: Demand response when price $\uparrow 10\%$

--- 2013 Survey ---- 2017 Survey

Outline

Data and Descriptives

Are Solar and PEV's Complements? A Basic Model of Co-adoption

Implications: A Model of Optimal Second Best Subsidies

Optimal versus Observed Subsidy Policies in CA

Next Steps

Model of optimal second best subsidies

- Develop stylized model to demonstrate the implications of cross-technology complementarity for optimal (constrained) policy
- "Toy" model will motivate counterfactual analysis in structural model of co-adoption

Model of optimal second best subsidies

- Develop stylized model to demonstrate the implications of cross-technology complementarity for optimal (constrained) policy
- "Toy" model will motivate counterfactual analysis in structural model of co-adoption
- Main implications of complementarity:
 - 1. Policymaker needs to know the full substitution matrix to reach second-best
 - 2. \uparrow complementarity, \downarrow optimal constrained policy
 - 3. Place greater subsidy on the clean technology with greatest substitutability

Model of optimal second best subsidies

- Develop stylized model to demonstrate the implications of cross-technology complementarity for optimal (constrained) policy
- "Toy" model will motivate counterfactual analysis in structural model of co-adoption
- Main implications of complementarity:
 - 1. Policymaker needs to know the full substitution matrix to reach second-best
 - 2. \uparrow complementarity, \downarrow optimal constrained policy
 - 3. Place greater subsidy on the clean technology with greatest substitutability
- Generalizes to other settings with overlapping subsidies for complementary goods

Model setup

- N identical households consume a numeraire and four goods:

 $x_1 =$ clean electricity $y_1 =$ clean transportation $x_2 = dirty electricity$

$$y_2 =$$
dirty transportation

- Households face prices $\boldsymbol{p} = (p_1^x, p_2^x, p_1^y, p_2^y, 1)$

Model setup

- N identical households consume a numeraire and four goods:

 x_1 = clean electricity x_2 = dirty electricity y_1 = clean transportation y_2 = dirty transportation

- Households face prices $\boldsymbol{p} = (p_1^x, p_2^x, p_1^y, p_2^y, 1)$
- Each of the two dirty goods produces a differentiated externality:

$$E_x = e_x N x_2$$
 $E_y = e_y N y_2$

Model setup

- N identical households consume a numeraire and four goods:

 x_1 = clean electricity x_2 = dirty electricity y_1 = clean transportation y_2 = dirty transportation

- Households face prices $\boldsymbol{p} = (p_1^x, p_2^x, p_1^y, p_2^y, 1)$
- Each of the two dirty goods produces a differentiated externality:

$$E_x = e_x N x_2$$
 $E_y = e_y N y_2$

- Assume x_1 is a substitute for x_2 and y_1 is a substitute y_2 , i.e.

$$rac{\partial x_1}{\partial p_2^x} > 0 \qquad \qquad rac{\partial x_2}{\partial p_1^x} > 0 \qquad \qquad rac{\partial y_1}{\partial p_2^y} > 0 \qquad \qquad rac{\partial y_2}{\partial p_1^y} > 0$$

Social planner's problem

- Social planner chooses per-unit taxes or subsidies, $\tau = (\tau_1^x, \tau_2^x, \tau_1^y, \tau_2^y)$ to maximize utility, accounting for externalities
- First-best policy: With no constraints on au, the following portfolio is first-best

$$au_1^{x*} = 0$$
 $au_2^{x*} = e_x N$ $au_1^{y*} = 0$ $au_2^{y*} = e_y N$

- Standard Pigouvian taxation result
- Tinbergen independence still holds

Social planner's problem

- Social planner chooses per-unit taxes or subsidies, $\tau = (\tau_1^x, \tau_2^x, \tau_1^y, \tau_2^y)$ to maximize utility, accounting for externalities
- First-best policy: With no constraints on au, the following portfolio is first-best

$$au_1^{x*} = 0 \qquad au_2^{x*} = e_x N \qquad au_1^{y*} = 0 \qquad au_2^{y*} = e_y N$$

- Standard Pigouvian taxation result
- Tinbergen independence still holds
- But what if we constrain $au_2^x = au_2^y = 0$?
 - $\rightarrow\,$ Could arise due to due political constraints on direct Pigouvian taxation

Takeaway #1: Policymaker needs to know full substitution matrix

- Naive constrained policy: If government ignores potential interactions between electricity and transportation, will set the following subsidies

$$\tilde{\tau}_1^{\mathsf{x}} = e_{\mathsf{x}} N\left(\frac{\partial x_2}{\partial \rho_1^{\mathsf{x}}}\right) \left(\frac{\partial x_1}{\partial \rho_1^{\mathsf{x}}}\right)^{-1} \qquad \qquad \tilde{\tau}_1^{\mathsf{y}} = e_{\mathsf{y}} N\left(\frac{\partial y_2}{\partial \rho_1^{\mathsf{y}}}\right) \left(\frac{\partial y_1}{\partial \rho_1^{\mathsf{y}}}\right)^{-1}$$

Takeaway #1: Policymaker needs to know full substitution matrix

- Naive constrained policy: If government ignores potential interactions between electricity and transportation, will set the following subsidies

$$\tilde{\tau}_{1}^{x} = e_{x} N\left(\frac{\partial x_{2}}{\partial p_{1}^{x}}\right) \left(\frac{\partial x_{1}}{\partial p_{1}^{x}}\right)^{-1} \qquad \qquad \tilde{\tau}_{1}^{y} = e_{y} N\left(\frac{\partial y_{2}}{\partial p_{1}^{y}}\right) \left(\frac{\partial y_{1}}{\partial p_{1}^{y}}\right)^{-1}$$

- Second-best policy: If government considers potential interactions between electricity and transportation, will set the following subsidies

$$\bar{\tau}_{1}^{x} = \frac{e_{x}N}{|\tilde{\Omega}|} \left(\frac{\partial x_{2}}{\partial p_{1}^{x}} \frac{\partial y_{1}}{\partial p_{1}^{y}} - \frac{\partial x_{2}}{\partial p_{1}^{y}} \frac{\partial y_{1}}{\partial p_{1}^{x}} \right) + \frac{e_{y}N}{|\tilde{\Omega}|} \left(\frac{\partial y_{2}}{\partial p_{1}^{x}} \frac{\partial y_{1}}{\partial p_{1}^{y}} - \frac{\partial y_{2}}{\partial p_{1}^{y}} \frac{\partial y_{1}}{\partial p_{1}^{x}} \right)$$
$$\bar{\tau}_{1}^{y} = \frac{e_{x}N}{|\tilde{\Omega}|} \left(\frac{\partial x_{2}}{\partial p_{1}^{y}} \frac{\partial x_{1}}{\partial p_{1}^{x}} - \frac{\partial x_{2}}{\partial p_{1}^{x}} \frac{\partial x_{1}}{\partial p_{1}^{y}} \right) + \frac{e_{y}N}{|\tilde{\Omega}|} \left(\frac{\partial y_{2}}{\partial p_{1}^{y}} \frac{\partial x_{1}}{\partial p_{1}^{x}} - \frac{\partial y_{2}}{\partial p_{1}^{x}} \frac{\partial x_{1}}{\partial p_{1}^{y}} \right)$$

Takeaway #2: \uparrow complementarity, \downarrow optimal constrained policy

- Assume clean electricity and clean transportation are complements
- Optimal constrained policy > naive policy when:
 - Strong within-technology substitution
 - Weak cross-technology complementarity

Takeaway #3: Emphasize clean technology with greatest impact

Degree of Clean Technology Substitutability

- Assume clean electricity and clean transportation are complements
- Result depends on both
 - Direct substitution
 - Effect of complementarity between clean goods

Outline

Data and Descriptives

Are Solar and PEV's Complements? A Basic Model of Co-adoption

Implications: A Model of Optimal Second Best Subsidies

Optimal versus Observed Subsidy Policies in CA

Next Steps

Comparing "optimal" and observed subsidies in CA

- Use model estimates to calculate "social surplus" for different subsidy portfolios
 - Consumer surplus
 - Environmental damages
 - Government revenues
- Max Δ surplus (relative to no subsidies):
 - PEV subsidy: \$9,000/vehicle
 - Solar subsidy: \$16,500/system
- Observed Ranges (2013, 2017):
 - PEV subsidies from CVRP
 - PV subsidies from CSI, federal ITC

Welfare losses from ignoring interactions

- Max Δ surplus (relative to no subsidies):
 - PEV subsidy: \$9,000/vehicle
 - Solar subsidy: \$16,500/system
- Validates results from theory model:
 - 1. Emphasize more the technology with larger behavioral response
 - 2. Likely to over-subsidize if ignore complementarity

Outline

Data and Descriptives

Are Solar and PEV's Complements? A Basic Model of Co-adoption

Implications: A Model of Optimal Second Best Subsidies

Optimal versus Observed Subsidy Policies in CA

Next Steps

Next steps

- Today:
 - Suggestive evidence of PV-PEV complementarity
 - Theory of optimal constrained subsidy policy for interacting technologies
 - Possible efficiency implications for CA subsidy policy
- Possible next steps: Aggregate model of PV/PEV adoption to recover substitution matrix
 - Leverage finite dependence to model/estimate dynamic adoption decisions

Next steps

- Today:
 - Suggestive evidence of PV-PEV complementarity
 - Theory of optimal constrained subsidy policy for interacting technologies
 - Possible efficiency implications for CA subsidy policy
- Possible next steps: Aggregate model of PV/PEV adoption to recover substitution matrix
 - Leverage finite dependence to model/estimate dynamic adoption decisions
 - Document distributional impacts of naive vs second-best policies

Next steps

- Today:
 - Suggestive evidence of PV-PEV complementarity
 - Theory of optimal constrained subsidy policy for interacting technologies
 - Possible efficiency implications for CA subsidy policy
- Possible next steps: Aggregate model of PV/PEV adoption to recover substitution matrix
 - Leverage finite dependence to model/estimate dynamic adoption decisions
 - Document distributional impacts of naive vs second-best policies
- Stepping back: What is the source of the complementarity?
 - $\rightarrow\,$ Looking for access to utility billing data to get sufficient variation in NEM, charging benefits

Thank you!

Please reach out with comments/questions www.jacobbradt.com jacob.bradt@austin.utexas.edu

Backup Slides

Are solar PV and EV complements?

- Goal: Estimate likelihood of adopting one technology conditional on adopting the other
 - $\rightarrow\,$ Empirical challenge: Unobservable factors affecting both PV and EV adoption
- Solution: Instrument adoption with relevant policy variation
 - PV: Spatial and temporal variation in solar rebates
 - ZEV: Temporal variation in EV rebate program \times proximity to HOV lanes
- Estimate the following via two-stage least squares for ZCTA z in year t:

$$\Delta q_{zt}^{EV \text{ sales}} \xrightarrow{\text{PV stock}} q_{z,t-1}^{EV} = \alpha_1 q_{z,t-1}^{PV} + \gamma_{c(z)t} + \lambda_z + \varepsilon_{zt}$$

$$\Delta q_{zt}^{PV} = \alpha_2 q_{z,t-1}^{EV} + \eta_{c(z)t} + \mu_z + \varepsilon_{zt}$$

$$\uparrow \text{PV installs} \qquad \uparrow \text{EV stock}$$

$$- \gamma_{c(z)t}, \eta_{c(z)t} \text{ are county-by-year FE; } \lambda_z, \mu_z \text{ are ZCTA FE}$$

Solar PV policy variation: CSI rebates

EV policy variation: CVRP rebates

Maximum Rebate
 Minimum Rebate

EV policy variation: CVRP rebates

EV policy variation: CVRP rebates

Full results: EV adoption

	First Stage: Installed Solar (1)	Second Stage: ZEV Sale (2)
(CSI Rebate),	-21.4	
	(4.14)	
(CSI Rebate) $_{t-1}$	-33.1	
(), · · ·	(3.25)	
(CSI Rebate) _t \times log(GHI)	2.93	
	(0.553)	
$(CSI Rebate)_{t-1} \times \log(GHI)$	4.48	
	(0.435)	
Installed Solar	. ,	5.55
		(2.20)
Observations	46,464	46,464
F-test (IV only)	58.444	22.564
ZCTA fixed effects	\checkmark	\checkmark
County-Year fixed effects	\checkmark	\checkmark

Full results: PV adoption

	First Stage: ZEV Count (1)	Second Stage: PV Installations (2)
CVRP Waitlist Length \times HOV Miles	-0.080 (0.009)	
CVRP Income Cap \times HOV Miles	36.7 (3.99)	
Max CVRP Rebate \times HOV Miles	-0.004 (0.0005)	
Gas Price \times HOV Miles	-2.15 (0.378)	
ZEV Count		0.133 (0.019)
Observations	46,464	46,464
F-test (IV only)	177.45	86.374
ZCTA fixed effects County-Year fixed effects	\checkmark	\checkmark

Toy model: Household's problem

- The representative household maximizes:

$$U = u(x_1, x_2, y_1, y_2) - N[e_x x_2 + e_y y_2] + \mu$$

where $u(\cdot)$ is a concave, C^2 function; subject to the following budget constraint:

$$(p_1^x + \tau_1^x)x_1 + (p_2^x + \tau_2^x)x_2 + (p_1^y + \tau_1^y)y_1 + (p_2^y + \tau_2^y)y_2 + \mu = m$$

- Assume that N is sufficiently large such that households do not internalize their impact on aggregate consumption of the dirty goods:

$$x_1\left(\frac{\partial u}{\partial x_1} - p_1^x - \tau_1^x\right) = 0 \qquad \qquad x_2\left(\frac{\partial u}{\partial x_2} - p_2^x - \tau_2^x\right) = 0$$
$$y_1\left(\frac{\partial u}{\partial y_1} - p_1^y - \tau_1^y\right) = 0 \qquad \qquad y_2\left(\frac{\partial u}{\partial y_2} - p_2^y - \tau_2^y\right) = 0$$

- FOCs imply demand functions:

$$x_1 = x_1(p, \tau)$$
 $x_2 = x_2(p, \tau)$ $y_1 = y_1(p, \tau)$ $y_2 = y_2(p, \tau)$

Toy model: Social planner's problem

- Government chooses a portfolio of per-unit taxes or subsidies, $\tau = (\tau_1^x, \tau_2^x, \tau_1^y, \tau_2^y) \in \mathbb{R}^4$, with tax revenues: $N[x_1\tau_1^x + x_2\tau_2^x + y_1\tau_1^y + y_2\tau_2^y]$
- Assuming lump-sum revenue recycling, government problem is

$$\mathcal{N}(\boldsymbol{\tau}) = u(x_1, x_2, y_1, y_2) - \mathcal{N}[e_x x_2 + e_y y_2] + m - (p_1^x + \tau_1^x)x_1 - (p_2^x + \tau_2^x)x_2 - (p_1^y + \tau_1^y)y_1 - (p_2^y + \tau_2^y)y_2 + \tau_1^x x_1 + \tau_2^x x_2 + \tau_1^y y_1 + \tau_2^y y_2$$

- Government's FOC:

$$\underbrace{\begin{bmatrix} \frac{\partial x_1}{\partial p_1^x} & \frac{\partial x_2}{\partial p_1^x} & \frac{\partial y_1}{\partial p_1^x} & \frac{\partial y_2}{\partial p_1^x} \\ \frac{\partial x_1}{\partial p_2^x} & \frac{\partial x_2}{\partial p_2^x} & \frac{\partial y_1}{\partial p_2^x} & \frac{\partial y_2}{\partial p_2^x} \\ \frac{\partial x_1}{\partial p_1^y} & \frac{\partial x_2}{\partial p_1^y} & \frac{\partial y_1}{\partial p_2^y} & \frac{\partial y_2}{\partial p_1^y} \\ \frac{\partial x_1}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} & \frac{\partial y_1}{\partial p_2^y} & \frac{\partial y_2}{\partial p_2^y} \\ \frac{\partial x_1}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} & \frac{\partial y_1}{\partial p_2^y} & \frac{\partial y_2}{\partial p_2^y} \\ \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} & \frac{\partial y_2}{\partial p_2^y} \\ \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} & \frac{\partial y_2}{\partial p_2^y} \\ \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} & \frac{\partial y_2}{\partial p_2^y} \\ \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} & \frac{\partial y_2}{\partial p_2^y} \\ \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} & \frac{\partial y_2}{\partial p_2^y} \\ \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} & \frac{\partial y_2}{\partial p_2^y} \\ \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} \\ \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} \\ \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} \\ \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} \\ \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} \\ \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} \\ \frac{\partial x_2}{\partial p_2^y} & \frac{\partial x_2}{\partial p_2^y} \\$$

Toy model: "Naive" constrained policy

- "Naive" constrained policy: Government sets policy ignoring all interactions between the electricity and transportation goods
- In this case, the government's problem becomes

$$\begin{bmatrix} \frac{\partial x_1}{\partial \rho_1^{\chi}} & 0\\ 0 & \frac{\partial y_1}{\partial \rho_1^{\gamma}} \end{bmatrix} \begin{bmatrix} \tau_1^{\chi} \\ \tau_1^{\chi} \end{bmatrix} = e_{\chi} N \begin{bmatrix} \frac{\partial x_2}{\partial \rho_1^{\chi}} \\ 0 \end{bmatrix} + e_{\gamma} N \begin{bmatrix} 0\\ \frac{\partial y_2}{\partial \rho_1^{\gamma}} \end{bmatrix}$$

- The government sets the following policies:

$$\tilde{\tau}_1^x = e_x N\left(\frac{\partial x_2}{\partial p_1^x}\right) \left(\frac{\partial x_1}{\partial p_1^x}\right)^{-1} \qquad \qquad \tilde{\tau}_1^y = e_y N\left(\frac{\partial y_2}{\partial p_1^y}\right) \left(\frac{\partial y_1}{\partial p_1^y}\right)^{-1}$$

- Toy model: Second-best policy
 - Second-best policy: Government sets policy accounting for all interactions between the electricity and transportation goods
 - In this case, the government's problem becomes

$$\underbrace{\begin{bmatrix} \frac{\partial x_1}{\partial p_1^x} & \frac{\partial y_1}{\partial p_1^y} \\ \frac{\partial x_1}{\partial p_1^y} & \frac{\partial y_1}{\partial p_1^y} \end{bmatrix}}_{\equiv \tilde{\Omega}} \begin{bmatrix} \tau_1^x \\ \tau_1^y \end{bmatrix} = e_x N \begin{bmatrix} \frac{\partial x_2}{\partial p_1^x} \\ \frac{\partial x_2}{\partial p_1^y} \end{bmatrix} + e_y N \begin{bmatrix} \frac{\partial y_2}{\partial p_1^y} \\ \frac{\partial y_2}{\partial p_1^y} \end{bmatrix}$$

- The government sets the following policies:

$$\bar{\tau}_{1}^{x} = \frac{e_{x}N}{|\tilde{\Omega}|} \left(\frac{\partial x_{2}}{\partial p_{1}^{x}} \frac{\partial y_{1}}{\partial p_{1}^{y}} - \frac{\partial x_{2}}{\partial p_{1}^{y}} \frac{\partial y_{1}}{\partial p_{1}^{x}} \right) + \frac{e_{y}N}{|\tilde{\Omega}|} \left(\frac{\partial y_{2}}{\partial p_{1}^{x}} \frac{\partial y_{1}}{\partial p_{1}^{y}} - \frac{\partial y_{2}}{\partial p_{1}^{y}} \frac{\partial y_{1}}{\partial p_{1}^{x}} \right)$$
$$\bar{\tau}_{1}^{y} = \frac{e_{x}N}{|\tilde{\Omega}|} \left(\frac{\partial x_{2}}{\partial p_{1}^{y}} \frac{\partial x_{1}}{\partial p_{1}^{x}} - \frac{\partial x_{2}}{\partial p_{1}^{x}} \frac{\partial x_{1}}{\partial p_{1}^{y}} \right) + \frac{e_{y}N}{|\tilde{\Omega}|} \left(\frac{\partial y_{2}}{\partial p_{1}^{y}} \frac{\partial x_{1}}{\partial p_{1}^{x}} - \frac{\partial y_{2}}{\partial p_{1}^{x}} \frac{\partial x_{1}}{\partial p_{1}^{y}} \right)$$