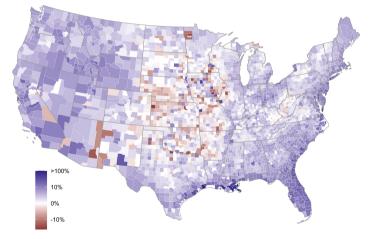

Private Benefits from Public Investment in Climate Adaptation and Resilience

Jacob T. Bradt jbradt@g.harvard.edu Harvard Kennedy School www.jacobbradt.com Joseph E. Aldy joseph_aldy@hks.harvard.edu Harvard Kennedy School scholar.harvard.edu/jaldy

NBER Summer Institute EEE July 24, 2023


Flood events are the most costly disasters in US

Source: NOAA National Centers for Environmental Information; CPI-Adjusted

Climate change will exacerbate flood risk in the US

Estimated Change in Properties with Flooding (2021-2051)

Source: First Street Foundation and Authors' calculations

 Share of US properties at risk of regular flooding ↑ 8.2% over next 30 years (FSF)

Research questions

- With growing natural hazard risks, policymakers face increasing imperative to invest in public adaptation
- These public investments provide private benefits, raising questions of who gains (or loses) and by how much?

Research questions

- With growing natural hazard risks, policymakers face increasing imperative to invest in public adaptation
- These public investments provide private benefits, raising questions of who gains (or loses) and by how much?
- Motivating questions:
 - ightarrow What is the magnitude of private impacts from public investments in adaptation?
 - → What are the equity implications of these large transfers?
 - → How do these investments impact aggregate welfare?

Summary of results

- We use novel data on areas protected by US Army Corps of Engineers (USACE) levees to estimate the housing market impacts of this large, public adaptation investment
 - ightarrow One of the single largest public investments in flood risk reduction in US

Summary of results

- We use novel data on areas protected by US Army Corps of Engineers (USACE) levees to estimate the housing market impacts of this large, public adaptation investment
 - → One of the single largest public investments in flood risk reduction in US

Findings:

- 1. Estimate subsidized flood protection benefits amount to 2.8% of a home's value
- 2. Spillover effects to surrounding, unprotected properties in the form of increased flood risk can reduce home value by as much as 1.1%
- 3. Flood protection benefits are progressive, but spillovers are regressive
- 4. Ex post, USACE-constructed levee costs appear to exceed benefits

Summary of results

- We use novel data on areas protected by US Army Corps of Engineers (USACE) levees to estimate the housing market impacts of this large, public adaptation investment
 - → One of the single largest public investments in flood risk reduction in US

- Findings:

- 1. Estimate subsidized flood protection benefits amount to 2.8% of a home's value
- 2. Spillover effects to surrounding, unprotected properties in the form of increased flood risk can reduce home value by as much as 1.1%
- 3. Flood protection benefits are progressive, but spillovers are regressive
- 4. Ex post, USACE-constructed levee costs appear to exceed benefits
- Presence of spillover introduces local strategic incentives that drive policy outcomes
 - ightarrow Highlights difficulties for policymakers in using existing institutions for adaptation investments

Related literature

- Individual adaptation and adaptation policy
 - Auffhammer, 2022; Barreca et al., 2016; Baylis and Boomhower, 2021; Burke and Emerick, 2016; Kahn, 2016; Wagner, 2021
- Capitalization of flood risk and adaptive investments
 - Beltrán et al., 2019; Bernstein et al., 2019; Bin et al., 2008; Bin and Landry, 2013; Dundas, 2017; Dundas and Lewis, 2020; Fell and Kousky, 2015; Gopalakrishnan et al., 2018; Graff Zivin et al., 2022; Hallstrom and Smith, 2005; Kelly and Molina, 2022; Murfin and Spiegel, 2020; Ortega and Taspinar, 2018; Walsh et al., 2019; Wang, 2021
- Public finance implications of climate change and impacts of place-based policies
 - Barrage, 2020; Busso et al., 2013; Fried, 2021; Goldsmith-Pinkham et al., 2021; Greenstone et al., 2010; Liao and Kousky, 2022; Mast, 2020

Related literature

- Individual adaptation and adaptation policy
 - Auffhammer, 2022; Barreca et al., 2016; Baylis and Boomhower, 2021; Burke and Emerick, 2016; Kahn, 2016; Wagner, 2021
 - → We evaluate economic questions around large-scale, public adaptation investments
- Capitalization of flood risk and adaptive investments
 - Beltrán et al., 2019; Bernstein et al., 2019; Bin et al., 2008; Bin and Landry, 2013; Dundas, 2017; Dundas and Lewis, 2020; Fell and Kousky, 2015; Gopalakrishnan et al., 2018; Graff Zivin et al., 2022; Hallstrom and Smith, 2005; Kelly and Molina, 2022; Murfin and Spiegel, 2020; Ortega and Taṣpınar, 2018; Walsh et al., 2019; Wang, 2021
 - ightarrow We emphasize the importance of spillover effects and explore incidence
- Public finance implications of climate change and impacts of place-based policies
 - Barrage, 2020; Busso et al., 2013; Fried, 2021; Goldsmith-Pinkham et al., 2021; Greenstone et al., 2010; Liao and Kousky, 2022; Mast, 2020
 - ightarrow We examine how strategic interactions drive adaptation investments and their outcomes

Outline

Institutional Background

Data and Empirical Design

Capitalization and Incidence Results

Mechanisms, Benefits/Costs, and Political Economy Considerations

Conclusion

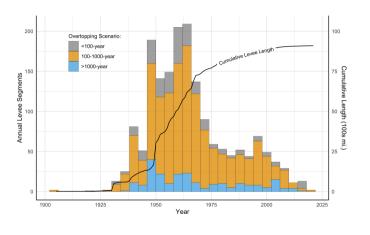
Outline

Institutional Background

Data and Empirical Design

Capitalization and Incidence Results

Mechanisms, Benefits/Costs, and Political Economy Consideration


Conclusion

What is a levee?

- Man-made structure that diverts water flow during flood stages
- Provides flood protection to defined area, up to a certain flood severity
- Imposes flood risk spillovers to downstream/upstream areas (Heine and Pinter, 2012; Remo et al., 2018)

Federal levee construction peaked in the 1950's and 1960's

- USACE primary federal entity responsible for flood control
- USACE project delivery:
 - Project-level Congressional authorization & funding
 - Require local cost share (45% construction, 100% O&M)
- Recent shift from flood control to policies managing consequences (e.g., NFIP)

Why do we study levees?

- Unclear if US shift away from flood control to managing flood consequences is sustainable (e.g., fiscal solvency issues)
- Adaptation to evolving future flood risks likely requires policies that address vulnerabilities and policies that manage consequences
 - Historically, USACE levees are the single largest federal investment in flood control
- Levees have key similarities to other forms of public adaptation investments, particularly those with geographically-differentiated benefits and costs
 - E.g., federally-constructed sea walls follow same institutional process as levees
 - USACE currently studying sea walls in New York, NY; Miami, FL; Galveston, TX

Outline

Institutional Background


Data and Empirical Design

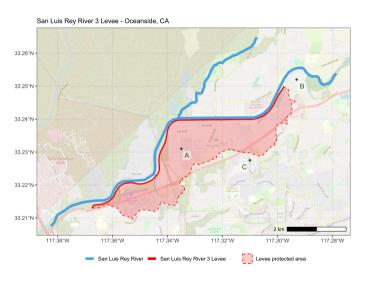
Capitalization and Incidence Results

Mechanisms, Benefits/Costs, and Political Economy Consideration

Conclusion

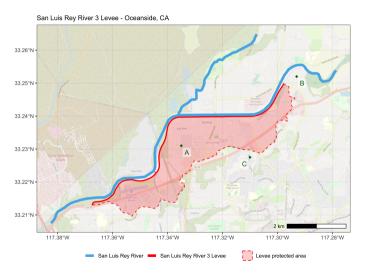
Primary data

- Data on flood risk adaptation projects from First Street Foundation
 - Merge data from USACE National Levee Database
- Focus on USACE levees
 - 1. Construction date available
 - 2. Similar set of projects
- Combine levees with home sale data from Zillow (1990-2020) using ZTRAX coordinates
- Final estimation sample: 80 levee systems


Additional data

- Home Mortgage Disclosure Act (HMDA) → demographic data (1990-2020)
 - Fuzzy match HMDA and ZTRAX data on census tract, loan year, loan amount, and lender
 - Match rates: 42% (unconditional); 68% (conditional) → HMDA match
- USGS National Hydrography Dataset ightarrow distance to water
 - Use ZTRAX coordinates and all relevant surface waters (e.g., estuaries, lakes/ponds, marsh, permanent and ephemeral rivers/streams) from NHD

Additional data

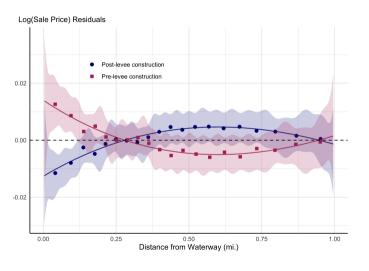

- Home Mortgage Disclosure Act (HMDA) → demographic data (1990-2020)
 - Fuzzy match HMDA and ZTRAX data on census tract, loan year, loan amount, and lender
 - Match rates: 42% (unconditional); 68% (conditional) HMDA match
- USGS National Hydrography Dataset → distance to water
 - Use ZTRAX coordinates and all relevant surface waters (e.g., estuaries, lakes/ponds, marsh, permanent and ephemeral rivers/streams) from NHD
- FEMA Presidential Disaster Declarations → county-level major floods (1990-2020)
- National Flood Insurance Program (NFIP) Claims & Policies \rightarrow tract-/county-level NFIP outcomes (2009-2020)
- ▶ Summary stats.

Effects of levee construction

- Identification challenges:
 - Siting endogeneity
 - Heterogeneous effects
- Potential effects of levee construction:
 - 1. Protection effects (A)
 - 2. Spillover effects (B)
 - 3. Macro effects (A, B, C)

Effects of levee construction: Identification

- $\Delta_t P = \text{pre-/post-levee}$ construction diff. in sale price
- Then for each property:


$$\Delta_t P_A = Macro + Protect$$
 $\Delta_t P_B = Macro + Spillover$
 $\Delta_t P_C = Macro$

- ID effects w/ double differences:

$$(Protect)_{DD} = \Delta_t P_A - \Delta_t P_C$$

 $(Spillover)_{DD} = \Delta_t P_B - \Delta_t P_C$

 \Rightarrow || trends assumption: absent levee, A, B, and C on same trend

Defining property exposure

- Treatment of parcel *i* transacting at time *t* defined using:

```
T_{it} = \mathbb{1} \{ \text{Sale occurs post levee construction} \}
L_i = \mathbb{1} \{ \text{Parcel is within a leveed area} \}
W_i = \mathbb{1} \{ \text{Parcel is spillover exposed} \}
```

- Note that $L_i = 1 \Leftrightarrow W_i = 0$
- Data-driven definition of W_i
 - Will allow for flexible W_i
 - Also explore using floodplain delineations to define W_i

Research design: Difference-in-Differences (DD)

- Use repeat sales data from properties inside leveed areas and within 5 mi of leveed area boundaries, excluding those within 0.1 mi around leveed area boundaries ("donut" design)

Research design: Difference-in-Differences (DD)

- Use repeat sales data from properties inside leveed areas and within 5 mi of leveed area boundaries, excluding those within 0.1 mi around leveed area boundaries ("donut" design)
- Separately identify flood protection and flood risk spillover effects by specifying property i's transaction price at time t, P_{it} , as:

$$\log(P_{it}) = \frac{\alpha_1}{\alpha_1} \left(T_{it} \times L_i \right) + \frac{\alpha_2}{\alpha_1} \left(T_{it} \times W_i \right) + \xi_i + \mu_{I(i)t} + \delta_t + \varepsilon_{it}$$

$$\uparrow \text{ spillover effects}$$

- ξ_i , $\mu_{I(i)t}$, δ_t are parcel, year-by-levee, and month-of-sample FE

Research design: Difference-in-Differences (DD)

- Use repeat sales data from properties inside leveed areas and within 5 mi of leveed area boundaries, excluding those within 0.1 mi around leveed area boundaries ("donut" design)
- Separately identify flood protection and flood risk spillover effects by specifying property i's transaction price at time t, P_{it} , as:

$$\log(P_{it}) = \frac{\alpha_1}{\alpha_1} \left(T_{it} \times L_i \right) + \frac{\alpha_2}{\alpha_1} \left(T_{it} \times W_i \right) + \xi_i + \mu_{I(i)t} + \delta_t + \varepsilon_{it}$$

$$\uparrow \text{ spillover effects}$$

- ξ_i , $\mu_{I(i)t}$, δ_t are parcel, year-by-levee, and month-of-sample FE
- $\mu_{I(i)t}$ fixed effect shuts down inadmissible comparisons (de Chaisemartin and D'Haultfœuille, 2020; Goodman-Bacon, 2021) ightharpoonup Staggered treatment timing

Outline

Institutional Background

Data and Empirical Design

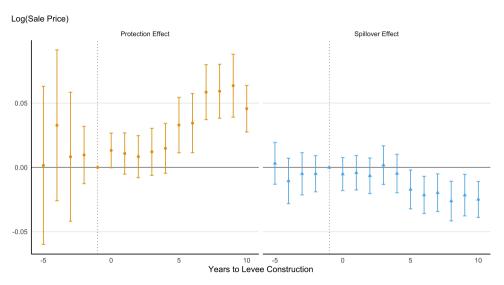
Capitalization and Incidence Results

Mechanisms, Benefits/Costs, and Political Economy Consideration

Conclusion

	$k \leq 0.1$ mi.		$k \leq 0.2$ mi.	$k \leq 0.3$ mi.	
	(1)	(2)			
Post \times Intersects (α_1)	0.098***	0.029***			
, ,	(0.015)	(0.009)			
Post \times k mi. of Water (α_2)	-0.062***	-0.013 [*]			
, ,	(0.012)	(0.007)			
Parcel FE	Yes	Yes			
Sale Year-Sale Month FE	Yes	Yes			
Sale Year-Levee Segment FE		Yes			
Observations	1,244,323	1,244,323			
R^2	0.924	0.948			

	$k \leq 0.1$ mi.		$k \leq 0.2$ mi.		$k \leq 0.3$ mi.
	(1)	(2)	(3)	(4)	
Post \times Intersects (α_1)	0.098***	0.029***	0.095***	0.028***	
` ,	(0.015)	(0.009)	(0.015)	(0.009)	
Post \times k mi. of Water (α_2)	-0.062***	-0.013*	-0.062***	-0.011**	
, ,	(0.012)	(0.007)	(0.009)	(0.005)	
Parcel FE	Yes	Yes	Yes	Yes	
Sale Year-Sale Month FE	Yes	Yes	Yes	Yes	
Sale Year-Levee Segment FE		Yes		Yes	
Observations	1,244,323	1,244,323	1,244,323	1,244,323	
R^2	0.924	0.948	0.924	0.948	

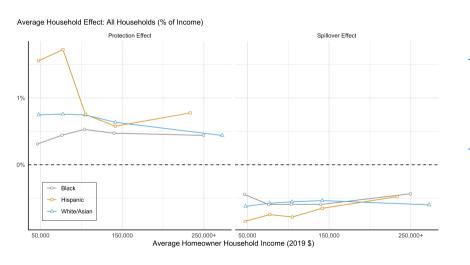

	$k \leq 0.1$ mi.		$k \leq 0.2 \text{ mi.}$		$k \leq 0.3$ mi.	
	(1)	(2)	(3)	(4)	(5)	(6)
Post \times Intersects (α_1)	0.098***	0.029***	0.095***	0.028***	0.092***	0.027***
Post \times k mi. of Water (α_2)	(0.015) -0.062*** (0.012)	(0.009) -0.013* (0.007)	(0.015) -0.062*** (0.009)	(0.009) -0.011** (0.005)	(0.015) -0.064*** (0.008)	(0.009) -0.008* (0.005)
Parcel FE Sale Year-Sale Month FE Sale Year-Levee Segment FE	Yes Yes	Yes Yes Yes	Yes Yes	Yes Yes Yes	Yes Yes	Yes Yes Yes
Observations \mathbb{R}^2	1,244,323 0.924	1,244,323 0.948	1,244,323 0.924	1,244,323 0.948	1,244,323 0.924	1,244,323 0.948

	$k \leq 0.1$ mi.		$k \leq 0.2$ mi.		$k \leq 0.3$ mi.	
	(1)	(2)	(3)	(4)	(5)	(6)
Post \times Intersects (α_1)	0.098***	0.029***	0.095***	0.028***	0.092***	0.027***
` ,	(0.015)	(0.009)	(0.015)	(0.009)	(0.015)	(0.009)
Post \times k mi. of Water (α_2)	-0.062***	-0.013*	-0.062***	-0.011**	-0.064***	-0.008*
` ,	(0.012)	(0.007)	(0.009)	(0.005)	(800.0)	(0.005)
Parcel FE	Yes	Yes	Yes	Yes	Yes	Yes
Sale Year-Sale Month FE	Yes	Yes	Yes	Yes	Yes	Yes
Sale Year-Levee Segment FE		Yes		Yes		Yes
Observations	1,244,323	1,244,323	1,244,323	1,244,323	1,244,323	1,244,323
R^2	0.924	0.948	0.924	0.948	0.924	0.948

- Differences between specifications w/ and w/o levee-year FE driven by negative weights
 - Large literature on issues w/ TWFE and staggered adoption (e.g., de Chaisemartin and D'Haultfœuille, 2020; Goodman-Bacon, 2021) ▶ Staggered treatment timing
 - → Estimate weight for each transaction under TWFE specification and find correlations which plausibly explain bias away from zero (e.g., income and weights pos. correlated) → TWFE weights


- Differences between specifications w/ and w/o levee-year FE driven by negative weights
 - Large literature on issues w/ TWFE and staggered adoption (e.g., de Chaisemartin and D'Haultfœuille, 2020; Goodman-Bacon, 2021) ▶ Staggered treatment timing
 - → Estimate weight for each transaction under TWFE specification and find correlations which plausibly explain bias away from zero (e.g., income and weights pos. correlated) → TWFE weights
- Robustness checks:
 - Spillover exposure definition: Flexible fxn. of waterway distance Floodplain boundary
 - Richer set of capitalized impacts:
 → Additional effects
 - Nearest-neighbor matching estimator to account for potential sorting Matching results
 - Alternative sample restrictions Alt. sample results
 - Alternative fixed-effect specifications Alt. fe results
 - Income-weighted results ▶ WLS results

Dynamic effects of levee construction



Incidence of levee construction: Treated households

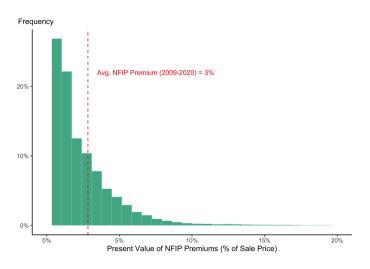
- Avg. transfers by race/ethnicity and income for treated HH/all HH
- Also find evidence of sorting ex-post by race/ethnicity
 - ▶ Differential sorting

Incidence of levee construction: All households

- Avg. transfers by race/ethnicity and income for treated HH/all HH
- Also find evidence of sorting ex-post by race/ethnicity
 - ► Differential sorting

Outline

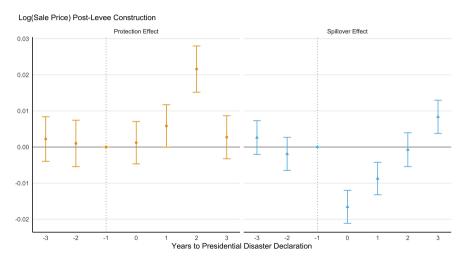
Institutional Background


Data and Empirical Design

Capitalization and Incidence Results

Mechanisms, Benefits/Costs, and Political Economy Considerations

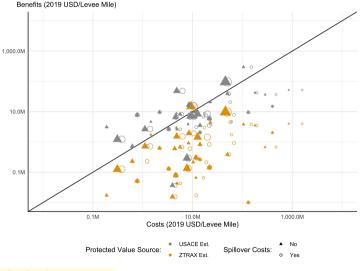
Conclusion


Mechanism: NFIP premium discounts

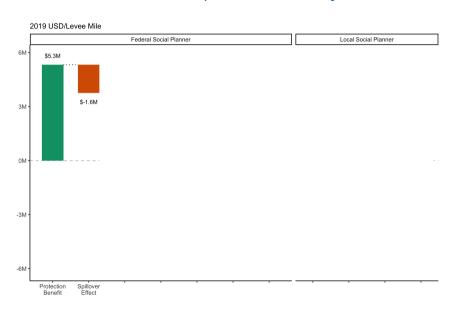
- Assume levee-protected HH take-up maximum NFIP coverage in perpetuity
 - → Average PDV of NFIP cost: 3% of home value
- While NFIP discount plays a role, other factors likely:
 - SFHA take-up 48% nationally
 - 25% of segments in sample are not FEMA-accredited

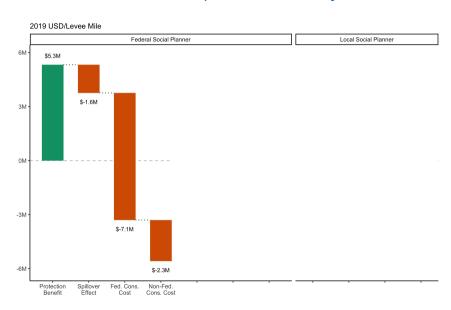
Mechanism: Learning from flood exposure

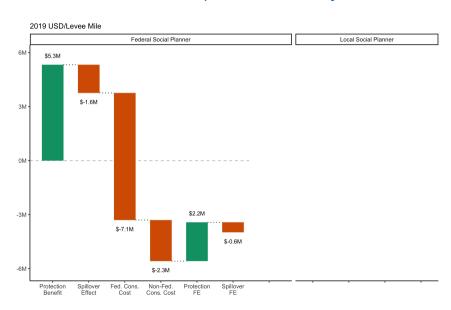
- Households learn from experience (Bakkensen and Barrage, 2021; Gallagher, 2014)

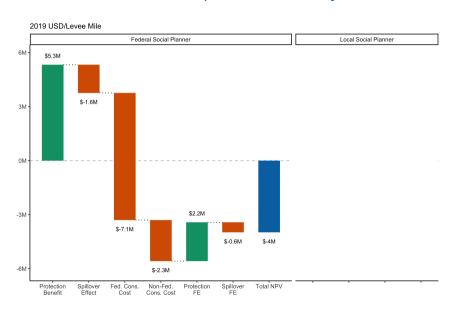


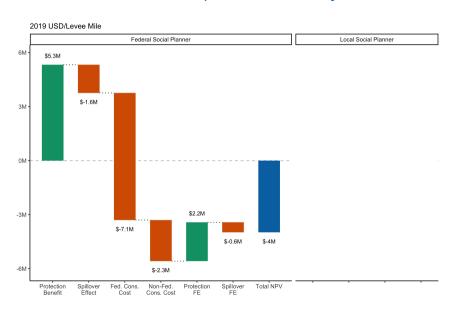
Aggregating benefits and costs of levees

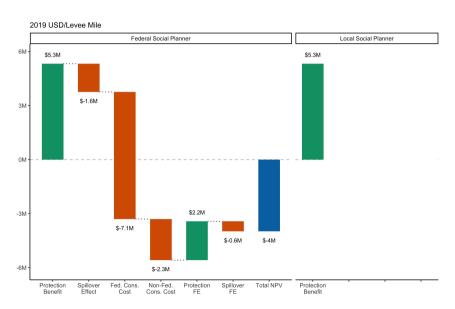

- Capture three types of benefits/costs
 - 1. Capitalized protection benefits and spillover costs
 - 2. Local public finance externalities (property tax revenue impacts)
 - 3. Upfront construction costs
- Total capitalized protection benefits and spillover costs calculated using: (1) assessed values from Zillow or (2) USACE's National Structure Inventory (+ preferred estimates)
- Calculate fiscal externality of, e.g., protection benefits, as:

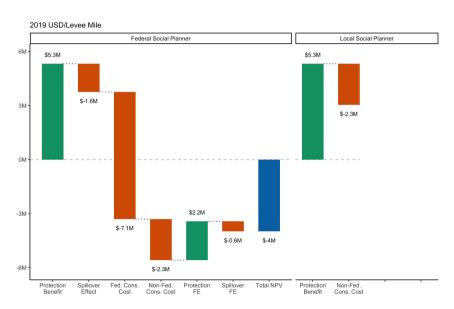

$$\textit{FE}_{\textit{I}}^{\textit{protection}} = \frac{\mathsf{Total\ Protection\ Benefits}_{\textit{I}} \times \mathsf{Effective\ Tax\ Rate}_{\textit{I}}}{\mathsf{Long\text{-}term\ Interest\ Rate}}$$

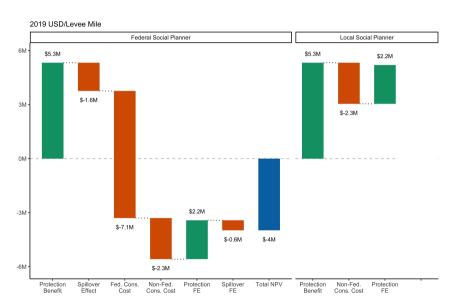

Estimated project-level benefits and costs

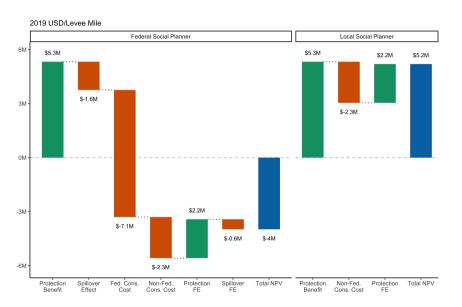


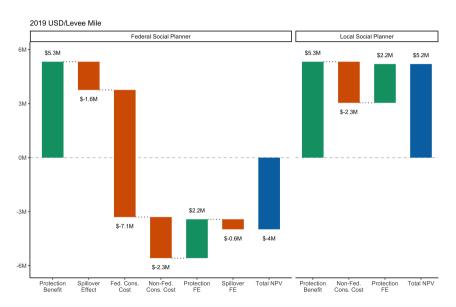

- Collect construction cost data for 37 projects
 - ightarrow Covers 53 of 80 levee systems in sample
- Normalize benefits and costs by levee size
 - Points proportional to levee size











- 30% of projects impose spillovers on other counties
 - Correlation: levee construction and representation
 - ► Committee membership

BCA results and aggregate welfare

- Important to note that BCA results are informative, but should not be viewed as complete measures of welfare impacts
 - → Capitalized effects ≠ true costs and benefits of changes in flood risk ► Incomplete capitalization
- Missing important benefit/cost categories (e.g., O&M costs, extensive/intensive effects, crowding out)
 - Evidence of crowding out of private adaptation → NFIP impacts
 - Evidence of extensive margin effects New construction results
- With these caveats, working on presenting BCA results in line with Biden Admin's proposed revisions to Circular A-94
 - Aggregate benefits and costs translated into welfare equivalents, introduce equity-weights

Outline

Institutional Background

Data and Empirical Design

Capitalization and Incidence Results

Mechanisms, Benefits/Costs, and Political Economy Consideration

Conclusion

Summary

 We examine the case of USACE-constructed levees to better understand key economic questions around public adaptation investments

- Findings:

- 1. Levee flood protection subsidies amount to 2.8% of a home's value
- 2. Substantial flood risk spillovers: reduce home value by 1.1%
- 3. Redistribution to lower income households partially offset by the regressivity of spillovers
- 4. Ex post, USACE-constructed levee costs appear to exceed benefits

Takeaways

- USACE levees highlight the difficulties that policymakers face in using existing institutions for climate adaptation
- Presence of spillover costs and accounting of aggregate benefits and costs illuminate local strategic incentives that determine policy outcomes
 - ightarrow Policymakers should carefully consider strategic incentives in the design of adaptation policy
- More broadly, economists' insights can be valuable in studying public investments in climate adaptation

Thank you!



Figure: Construction of old Galveston, TX sea wall

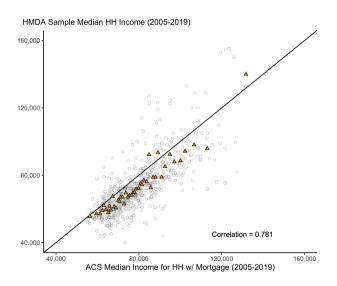


Figure: Rendering of new Galveston, TX sea wall

Please reach out with comments/questions jbradt@g.harvard.edu www.jacobbradt.com

Transaction-level demographic data

- Match ZTRAX transaction-level data with demographic data from Home Mortgage Disclosure Act
- Match rates: 42% (unconditional); 68% (conditional)
- Match rates from literature:
 54% (Bayer et al., 2016), 47%
 (Bakkensen and Ma, 2020)

Summary statistics

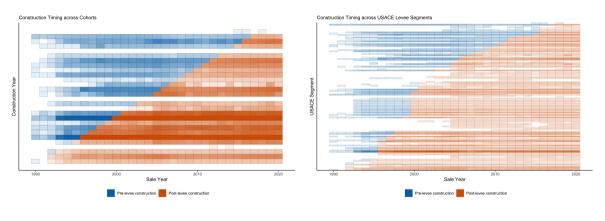
	Unmatched Sample		HMDA	A Sample		
	Mean	Std. Dev.	Mean	Std. Dev.	Diff. in Means	Std. Error
Price (1000s 2019\$)	390.465	286.726	406.597	262.969	16.133	0.410
Bathrooms	2.077	0.770	2.104	0.722	0.027	0.00
Bedrooms	3.235	0.837	3.275	0.807	0.040	0.00
Interior Area (ft. ²)	1.781	0.739	1.793	0.714	0.012	0.00
Age (years)	40.022	28.494	34.803	25.508	-5.219	0.04
Levee Protected	0.121	0.326	0.132	0.339	0.012	0.00
Distance from Leveed Area (mi.)	-2.292	1.815	-2.213	1.821	0.079	0.00
Distance from Levee (mi.)	3.659	2.560	3.622	2.524	-0.037	0.00
Distance from Water (mi.)	0.631	0.480	0.643	0.484	0.012	0.00
Loan Amount (1000s 2019 \$)	_	_	247.260	160.701	_	-
Income (1000s 2019 \$)	_	_	128.298	732.087	_	-
Black	_	_	0.046	0.210	_	-
White	_	_	0.637	0.481	_	-
Hispanic	_	_	0.087	0.283	_	-
Asian	_	_	0.144	0.351	_	-
N	867,490		944,366			

3

Identification details

- Define $\Delta_t P = \text{pre-/post-levee}$ construction change in a property's price
- Given the definition of the 3 example parcels and our primary specification, note that

$$\begin{array}{lll} \Delta_{t}P_{A} = \textit{Macro} + \textit{Protect} & = \alpha_{1} + \Delta_{t}\mu_{I(i)t} + \Delta_{t}\delta_{t} \\ \Delta_{t}P_{B} = \textit{Macro} + \textit{Spillover} & = \alpha_{2} + \Delta_{t}\mu_{I(i)t} + \Delta_{t}\delta_{t} \\ \Delta_{t}P_{C} = \textit{Macro} & = \Delta_{t}\mu_{I(i)t} + \Delta_{t}\delta_{t} \end{array}$$


 We can therefore identify the protection and spillover effects with the following double differences (DD):

$$(Protect)_{DD} = \Delta_t P_A - \Delta_t P_C = \alpha_1$$

 $(Spillover)_{DD} = \Delta_t P_B - \Delta_t P_C = \alpha_2$

▶ Go back

4

Staggered treatment

TWFE weights

- Large literature on issues w/ TWFE and staggered adoption (e.g., de Chaisemartin and D'Haultfœuille, 2020; Goodman-Bacon, 2021) → Staggered treatment timing
- By the Frisch-Waugh-Lovell theorem, each observation's weight for each treatment in the TWFE specification given by:

$$\omega_{it}^{L} = \frac{\hat{\epsilon}_{it}^{L}}{\sum_{it} \hat{\epsilon}_{it}^{L}} \qquad \qquad \omega_{it}^{W} = \frac{\hat{\epsilon}_{it}^{W}}{\sum_{it} \hat{\epsilon}_{it}^{W}}$$

where

$$\hat{\varepsilon}_{it}^L = (T_{it} \times L_i) - \hat{\beta}_1(T_{it} \times W_i) - \hat{\zeta}_i - \hat{\delta}_t \qquad \qquad \hat{\varepsilon}_{it}^W = (T_{it} \times W_i) - \hat{\beta}_1(T_{it} \times L_i) - \hat{\zeta}_i - \hat{\delta}_t$$

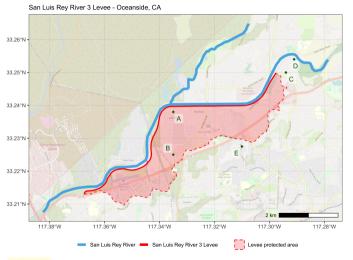
- Relationship between TWFE weights and observables may be informative
 - Positive correlation between TWFE weights and borrower income
 - Negative correlation between TWFE weights and levee overtopping scenario

6

Spillover exposure definition: Flexible function of waterway proximity

	(1)	(2)
Post × Intersects	0.113***	0.030***
	(0.016)	(0.009)
Post \times Distance to Water Bins		
[0.0, 0.1 mi]	-0.072***	-0.017**
	(0.012)	(0.007)
(0.1, 0.2 mi]	-0.062***	-0.010*
•	(0.009)	(0.005)
(0.2, 0.3 mi]	-0.060***	-0.003
	(800.0)	(0.005)
(0.3, 0.4 mi]	-0.054***	-0.003
	(0.008)	(0.005)
Parcel FE	Yes	Yes
Sale Year-Sale Month FE	Yes	Yes
Sale Year-Levee Segment FE		Yes
Observations	1,244,323	1,244,323
R^2	0.924	0.948

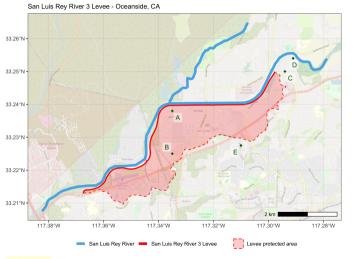
Clustered (Tract FE) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1


Spillover exposure definition: Floodplain boundaries

Spillover Exposure Defined by:	Pro	Proximity to Water				
	(1)	(2)	(3)	(4)		
Post × Intersects	0.029***	0.028***	0.027***	0.028***		
Post \times k mi. of Water	(0.009) -0.013*	(0.009) -0.011**	(0.009) -0.008*	(0.009)		
$Post \times Floodplain$	(0.007)	(0.005)	(0.005)	-0.013* (0.009)		
k ≤	0.1 mi.	0.2 mi.	0.3 mi.	_		
Parcel FE	Yes	Yes	Yes	Yes		
Sale Year-Levee Segment FE	Yes	Yes	Yes	Yes		
Sale Year-Sale Month FE	Yes	Yes	Yes	Yes		
Observations	1,244,323	1,244,323	1,244,323	1,244,308		
R ²	0.948	0.948	0.948	0.948		

Clustered (Tract FE) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Broader set of effects of levee construction



Potential effects of levee construction:

- 1. Protection effects (A, B)
- 2. Adjacency effects (A, C)
- 3. Salience effects (A)
- 4. Spillover effects (C, D)
- 5. Macro effects (A, B, C, D, E)

Broader set of effects of levee construction

- Define $\Delta_t P = \text{pre-/post-levee}$ construction change in a property's price
- Then for each property:

$$\begin{array}{l} \Delta_{t}P_{A}=\textit{Macro}+\textit{Protect}+\textit{Adjacency}\\ +\textit{Salience} \\ \\ \Delta_{t}P_{B}=\textit{Macro}+\textit{Protect} \\ \\ \Delta_{t}P_{C}=\textit{Macro}+\textit{Adjacency}+\textit{Spillover} \\ \\ \Delta_{t}P_{D}=\textit{Macro}+\textit{Spillover} \\ \\ \Delta_{t}P_{E}=\textit{Macro} \end{array}$$

⇒ Can use changes in prices across property types to identify effects

Expanded capitalization estimates

	$k \leq 0.1$ mi.		$k \leq 0.2$ mi.		$k \leq 0$).3 mi.
	(1)	(2)	(3)	(4)	(5)	(6)
Post \times Intersects (α_1)	0.098***	0.026***	0.097***	0.027***	0.095***	0.027***
, ,	(0.015)	(800.0)	(0.015)	(0.009)	(0.015)	(0.009)
Post $\times k$ mi. of Levee (α_2)	-0.0005	-0.019	0.054*	0.014	0.070***	0.018
, ,	(0.043)	(0.029)	(0.029)	(0.015)	(0.024)	(0.011)
Post $\times k$ mi. of Water (α_3)	-0.062***	-0.014**	-0.063* [*] *	-0.012***	-0.066* [*] *	-0.009*
, ,	(0.012)	(0.007)	(0.009)	(0.005)	(0.008)	(0.005)
Post \times Intersects \times k mi. of Levee (α_4)	-0.068	-0.021	-0.101***	-0.043**	-0.110***	-0.037**
. ,	(0.050)	(0.035)	(0.037)	(0.019)	(0.032)	(0.016)
Parcel FE	Yes	Yes	Yes	Yes	Yes	Yes
Sale Year-Sale Month FE	Yes	Yes	Yes	Yes	Yes	Yes
Sale Year-Levee Segment FE		Yes		Yes		Yes
Observations	1,279,984	1,279,984	1,279,984	1,279,984	1,279,984	1,279,984
R^2	0.924	0.948	0.924	0.948	0.924	0.948

Clustered (Tract FE) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

[▶] Go back

Robustness: Nearest-neighbor DD estimator

	$k \leq 0.1 \; \mathrm{mi}.$	$k \leq 0.2 \text{ mi.}$	$k \leq 0.3$ mi.
Post x Intersects	0.075***	0.064***	0.059***
	(0.005)	(0.005)	(0.005)
Observations \mathbb{R}^2	422,265	422,265	422,265
	0.713	0.720	0.727
Post \times k mi. of Water	0.016**	-0.0006	-0.014***
	(0.007)	(0.004)	(0.003)
Observations	183,036	488,325	840,123
R ²	0.574	0.574	0.575

Cluster-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

- Kuminoff and Pope, 2014 and Banzhaf, 2021 demonstrate bias from panel variation in settings with shifting price gradients (i.e., sorting)
- Follow Muehlenbachs et al., 2015 and match treated parcels to controls within years

Robustness: Sample restrictions

	Preferred Spec.	Alte	Alternative Sample Restrictions				
	(1)	(2)	(3)	(4)	(5)		
Post × Intersects (α_1)	0.028***	0.023***	0.033***	0.022**	0.024**		
· -/	(0.009)	(800.0)	(0.011)	(0.010)	(0.010)		
Post \times k mi. of Water (α_2)	-0.011**	-0.012**	-0.012**	-0.003	0.0009		
(-/	(0.005)	(0.005)	(0.005)	(0.007)	(0.010)		
Donut BW (mi)	0.1	0.0	0.2	0.1	0.1		
Control/Spillover BW (mi)	5.0	5.0	5.0	2.0	1.0		
Parcel FE	Yes	Yes	Yes	Yes	Yes		
Sale Year-Levee Segment FE	Yes	Yes	Yes	Yes	Yes		
Sale Year-Sale Month	Yes	Yes	Yes	Yes	Yes		
Observations	1,244,323	1,279,984	1,208,892	521,695	310,298		
R^2	0.948	0.948	0.948	0.950	0.950		

Clustered (Tract FE) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Robustness: Fixed effects

	$k \leq 0.1$ mi.		$k \leq 0.2$ mi.		$k \leq 0$.3 mi.
	(1)	(2)	(3)	(4)	(5)	(6)
Post × Intersects (α_1)	0.054***	0.029***	0.053***	0.028***	0.053***	0.027***
	(0.011)	(0.009)	(0.011)	(0.009)	(0.011)	(0.009)
Post $\times k$ mi. of Water (α_2)	-0.012	-0.013 [*]	-0.009*	-0.011**	-0.006	-0.008*
, ,	(0.007)	(0.007)	(0.005)	(0.005)	(0.005)	(0.005)
Parcel, Month-of-sample FE	Yes	Yes	Yes	Yes	Yes	Yes
Sale Year-Levee System FE	Yes		Yes		Yes	
Sale Year-Levee Segment FE		Yes		Yes		Yes
Observations	1,244,323	1,244,323	1,244,323	1,244,323	1,244,323	1,244,323
R^2	0.948	0.948	0.948	0.948	0.948	0.948

Clustered (Tract FE) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Robustness: Weighted-least squares

	$k \leq 0.1$ mi.		$k \leq 0.2$ mi.		$k \leq 0.3$ mi.	
	(1)	(2)	(3)	(4)	(5)	(6)
Post × Intersects (α_1)	0.029***	0.039***	0.028***	0.038***	0.027***	0.038***
, ,	(0.009)	(0.007)	(0.009)	(0.007)	(0.009)	(0.007)
Post $\times k$ mi. of Water (α_2)	-0.013*	-0.016**	-0.011**	-0.011**	-0.008*	-0.009**
, ,	(0.007)	(0.007)	(0.005)	(0.005)	(0.005)	(0.004)
Weights	None	Income	None	Income	None	Income
Parcel FE	Yes	Yes	Yes	Yes	Yes	Yes
Sale Year-Levee Segment FE	Yes	Yes	Yes	Yes	Yes	Yes
Month-of-sample FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	1,244,323	646,825	1,244,323	646,825	1,244,323	646,825
R^2	0.948	0.987	0.948	0.987	0.948	0.987

Clustered (Tract FE) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Event study specification

 Separately estimate the following specifications on the relevant subset of treatment and control parcels

$$\begin{split} \log P_{it} &= \sum_{\tau=-5}^{10} \alpha_1^{\tau} \Big(L_i \times \mathbb{1} \big\{ t = (\textit{LeveeYear}_i + \tau) \big\} \Big) + \xi_i + \mu_{I(i)t} + \delta_t + \varepsilon_{it} \\ \log P_{it} &= \sum_{\tau=-5}^{10} \alpha_2^{\tau} \Big(W_i \times \mathbb{1} \big\{ t = (\textit{LeveeYear}_i + \tau) \big\} \Big) + \xi_i + \mu_{I(i)t} + \delta_t + \varepsilon_{it} \end{split}$$

where

- LeveeYear; indicates the year parcel i's nearest levee segment is constructed
- $\mathbb{1}\{t=(\textit{LeveeYear}_i+ au)\}$ is an indicator variable that equals 1 if a parcel's transaction year t occurs in event times au relative to the levee construction year and zero otherwise
- Normalize treatment effects relative to au=-1

Post-construction sorting

	log(Income) (1)	White/Asian (2)	Black (3)	Hispanic (4)
Post × Intersects	0.001	0.043***	-0.006	-0.041**
	(0.013)	(0.012)	(0.004)	(0.020)
Post \times Distance to Water Bins	, ,	, ,	, ,	, ,
[0.0, 0.1 mi]	-0.017	-0.043***	0.019***	-0.033**
	(0.011)	(0.010)	(0.005)	(0.015)
(0.1, 0.2 mi]	0.0006	-0.028* [*] *	0.010*	-0.010
	(0.009)	(800.0)	(0.005)	(0.012)
(0.2, 0.3 mi]	-0.009	-0.028***	0.014***	0.007
	(800.0)	(800.0)	(0.004)	(0.012)
(0.3, 0.4 mi]	-0.004	-0.013*	0.005	0.0003
•	(0.008)	(0.007)	(0.003)	(0.012)
Parcel FE	Yes	Yes	Yes	Yes
Sale Year-Sale Month FE	Yes	Yes	Yes	Yes
Sale Year-Levee Segment FE	Yes	Yes	Yes	Yes
Dependent variable mean	138,319	0.787	0.043	0.174
Observations	646,825	646,837	646,837	387,507
R^2	0.817	0.668	0.690	0.816

 DD design with demographic outcomes

 Suggestive of sorting away from risk by white/asian households

► Go back ► HMDA match details

Clustered (Tract FE) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Mechanism: FEMA accreditation

	$k \leq 0.1 \mathrm{mi}. \ (1)$	$k \leq 0.2 \text{ mi.}$ (2)	$k \leq 0.3 \text{ mi.}$ (3)
Post \times k mi. of Water	-0.013*	-0.012**	-0.009**
	(0.007)	(0.005)	(0.005)
Post \times Intersects	-0.005	-0.007	-0.008
	(0.019)	(0.019)	(0.019)
Post \times Intersects \times FEMA-accredited	0.052**	0.053***	0.053***
	(0.021)	(0.021)	(0.021)
Parcel FE	Yes	Yes	Yes
Sale Year-Levee Segment FE	Yes	Yes	Yes
Sale Year-Sale Month FE	Yes	Yes	Yes
Observations	1,244,323	1,244,323	1,244,323
R^2	0.948	0.948	0.948

Clustered (Tract FE) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Flood exposure specification

- Generate indicators of flood-related Presidential Disaster Declarations (PDDs) in annual bins
- Separately estimate the following specifications on the relevant subset of treatment and control parcels, restricting to transactions post levee construction

$$\begin{split} \log P_{it} &= \sum_{\tau = -3}^{3} \alpha_{1}^{\tau} \Big(L_{i} \times PDD_{c(i)t}^{\tau} \Big) + \xi_{i} + \nu_{c(i)t} + \delta_{t} + \varepsilon_{it} \\ \log P_{it} &= \sum_{\tau = -3}^{3} \alpha_{2}^{\tau} \Big(W_{i} \times PDD_{c(i)t}^{\tau} \Big) + \xi_{i} + \nu_{c(i)t} + \delta_{t} + \varepsilon_{it} \end{split}$$

where

- $PDD_{c(i)t}^{\tau}$ is a binary variable that equals 1 if the transaction of parcel i occurs in a county c that experiences a federal disaster declaration τ years relative to sale year t and 0 otherwise
- $\nu_{c(i)t}$ is a county-by-year fixed effect
- Normalize treatment effects relative to au=-1

Pooled flood exposure results

	(1)	(2)	(3)
High Flood Exp.	-0.005*	9.69×10^{-5}	-0.001
High Flood Exp. × Intersects	(0.003) 0.043***	(0.003)	(0.003) 0.044***
	(0.006)		(0.006)
High Flood Exp. $ imes$ Near Water		-0.027***	-0.026***
		(0.004)	(0.004)
Parcel FE	Yes	Yes	Yes
Sale Year-Levee Project FE	Yes	Yes	Yes
Sale Year-Sale Month FE	Yes	Yes	Yes
Observations	745,302	745,067	858,428
R^2	0.959	0.958	0.958

- Restrict data to transactions that occur after levee construction
- Regress log of real sale price on interactions between relevant treatment indicators and an indicator of whether a transaction is "high flood exposed"
 - Define as a transaction of a parcel falling within a county with a greater than 75th percentile value of lagged 24-month count of flood-related storm events (NOAA)

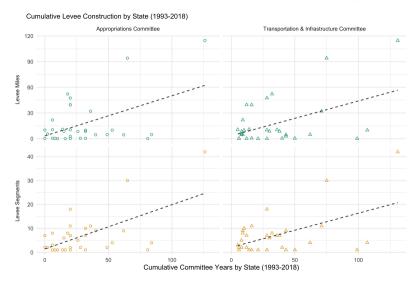
Effects of levee construction on NFIP outcomes

	$k \leq 0.1 \text{ mi.}$		$k \leq 0.2 \text{ mi.}$		$k \leq 0.3$ mi.	
	Take-up (1)	\$/Claim (2)	Take-up (4)	\$/Claim (5)	Take-up (7)	\$/Claim (8)
Post × Intersects	-0.03***	-518.3	-0.03***	-269.9	-0.03***	-283.2
	(0.009)	(4,120.9)	(0.009)	(3,680.2)	(0.009)	(3,675.6)
Post $\times k$ mi. of Water	0.006	6,581.3**	0.001	5,478.6*	0.005	5,414.9*
	(0.007)	(3,315.2)	(800.0)	(3,181.0)	(0.009)	(3,216.0
Sale Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Tract FE	Yes	Yes	Yes	Yes	Yes	Yes
Levee Project FE-Sale Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	19,284	1,374	19,284	1,374	19,284	1,374
R^2	0.9	0.9	0.9	0.9	0.9	0.9

Clustered (Tract FE) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

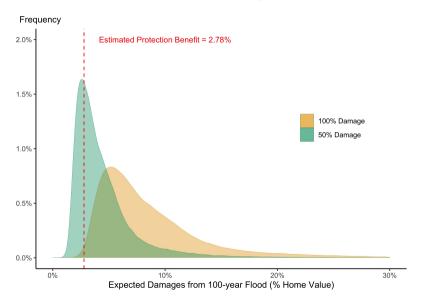
Regress aggregate NFIP outcomes, Y_{ct} , on a balanced panel at the census tract-by-year level:

$$Y_{ct} = \beta_1(T_{ct} \times L_c) + \beta_2(T_{ct} \times W_c) + \xi_c + \mu_{I(c)t} + \delta_t + \epsilon_{ct}$$


where ξ_c , $\mu_{I(c)t}$, and δ_t are tract, levee-by-year, and year fixed effects

► Go back (learning) ► Go back (BCA)

Aggregate benefits and costs


	Mean	Std. Dev.	Min.	Max.	N
Protection Benefits (\$Mil./mi.)					
ZTRAX Housing Stock Estimate	1.066	2.136	0.007	10.930	37
USACE Housing Stock Estimate	9.608	14.027	0.000	71.202	37
Costs (\$Mil./mi.)					
Construction Costs					
Total	60.781	157.651	0.189	852.161	37
Federal	49.007	130.027	0.003	664.098	29
Non-Federal	15.385	38.060	0.005	188.063	27
Spillover Effects	13.799	40.799	0.008	238.268	37
Fiscal Externalities					
Effective Tax Rate: Leveed Area	0.035	0.049	0.010	0.226	33
Effective Tax Rate: Spillover Area	0.032	0.044	0.006	0.208	34
Protection Benefits (\$Mil./mi.)					
ZTRAX Housing Stock Estimate					
2% real interest rate	0.943	1.694	0.000	6.951	37
3.5% real interest rate	0.539	0.968	0.000	3.972	37
USACE Housing Stock Estimate					
2% real interest rate	21.086	73.863	0.000	449.851	37
3.5% real interest rate	12.049	42.207	0.000	257.058	37
Spillover Effects (\$Mil./mi.)					
2% real interest rate	34.368	144.968	0.000	866.797	37
3.5% real interest rate	19.639	82.839	0.000	495.313	37

Local representation and levee construction are positively correlated

Incomplete capitalization of flood risk changes

Extensive margin impacts

Dependent Variable:	as	asinh(Home Age)				
Model:	(1)	(2)	(3)			
Post x Intersects	-0.233**	-0.214**	-0.202**			
	(0.095)	(0.095)	(0.095)			
Post $\times k$ mi. of Water	0.223***	0.193***	0.159***			
	(0.052)	(0.037)	(0.034)			
Parcel FE	Yes	Yes	Yes			
Sale Year-Levee Segment FE	Yes	Yes	Yes			
Sale Year-Sale Month	Yes	Yes	Yes			
$k \le$	0.1 mi.	0.2 mi.	0.3 mi.			
Observations	1,244,323	1,244,323	1,244,323			
R^2	0.915	0.915	0.915			

Clustered (Tract FE) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

References I

- Auffhammer, M. (2022). Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption. *Journal of Environmental Economics and Management*, 114, 102669.
- Bakkensen, L. A., & Barrage, L. (2021). Going Underwater? Flood Risk Belief Heterogeneity and Coastal Home Price Dynamics. The Review of Financial Studies, hhab122.
- Banzhaf, H. S. (2021). Difference-in-Differences Hedonics [Publisher: The University of Chicago Press]. *Journal of Political Economy*, 129(8), 2385–2414. Barrage, L. (2020). The Fiscal Costs of Climate Change. *AEA Papers and Proceedings*, 110, 107–112.
- Barreca, A., Clay, K., Deschenes, O., Greenstone, M., & Shapiro, J. S. (2016). Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century. *Journal of Political Economy*, 124(1), 105–159.
- Baylis, P., & Boomhower, J. (2021). The Economic Incidence of Wildfire Suppression in the United States. *American Economic Journal: Applied Economics, Forthcoming*, 51.
- Beltrán, A., Maddison, D., & Elliott, R. (2019). The impact of flooding on property prices: A repeat-sales approach. *Journal of Environmental Economics and Management*. 95, 62–86.
- Bernstein, A., Gustafson, M. T., & Lewis, R. (2019). Disaster on the horizon: The price effect of sea level rise. *Journal of Financial Economics*, 134(2), 253–272. Bin, O., Kruse, J. B., & Landry, C. E. (2008). Flood Hazards, Insurance Rates, and Amenities: Evidence From the Coastal Housing Market Leprint: https://onlinelibrary.wilev.com/doi/odf/10.1111/j.1539-6975.2007.048.xl. *Journal of Risks and Insurance*, 75(1), 63–82.
- Bin, O., & Landry, C. E. (2013). Changes in implicit flood risk premiums: Empirical evidence from the housing market. Journal of Environmental Economics and Management. 65(3), 361–376.
- Burke, M., & Emerick, K. (2016). Adaptation to Climate Change: Evidence from US Agriculture. American Economic Journal: Economic Policy, 8(3), 106-140.
- Busso, M., Gregory, J., & Kline, P. (2013). Assessing the Incidence and Efficiency of a Prominent Place Based Policy. American Economic Review, 103(2), 807–947.
- de Chaisemartin, C., & D'Haultfœuille, X. (2020). Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects. American Economic Review, 110(9), 2964–2996.
- Dundas, S. J. (2017). Benefits and ancillary costs of natural infrastructure: Evidence from the New Jersey coast. *Journal of Environmental Economics and Management*, 85, 62–80.
- Dundas, S. J., & Lewis, D. J. (2020). Estimating Option Values and Spillover Damages for Coastal Protection: Evidence from Oregon's Planning Goal 18
 [Publisher: The University of Chicago Press]. Journal of the Association of Environmental and Resource Economists, 7(3), 519–554.
- Fell, H., & Kousky, C. (2015). The value of levee protection to commercial properties. Ecological Economics, 119, 181-188.
- Fried, S. (2021). Seawalls and Stilts: A Quantitative Macro Study of Climate Adaptation. The Review of Economic Studies, (0), 42.

References II

- Gallagher, J. (2014). Learning about an Infrequent Event: Evidence from Flood Insurance Take-Up in the United States. American Economic Journal: Applied Economics, 6(3), 206–233.
- Goldsmith-Pinkham, P., Gustafson, M. T., Schwert, M., & Lewis, R. C. (2021). Sea Level Rise Exposure and Municipal Bond Yields. Working Paper, 76. Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. Journal of Econometrics, 225(2), 254–277.
- Gopalakrishnan, S., Landry, C. E., & Smith, M. D. (2018). Climate Change Adaptation in Coastal Environments: Modeling Challenges for Resource and Environmental Economists [Publisher: The University of Chicago Press]. Review of Environmental Economics and Policy, 12(1), 48–68.
- Graff Zivin, J., Liao, Y., & Panassie, Y. (2022). How Hurricanes Sweep Up Housing Markets: Evidence from Florida. Working Paper, 60.
- Greenstone, M., Hornbeck, R., & Moretti, E. (2010). Identifying Agglomeration Spillovers: Evidence from Winners and Losers of Large Plant Openings. *Journal of Political Economy*, 118(3), 536–598.
- Hallstrom, D. G., & Smith, V. K. (2005). Market responses to hurricanes. *Journal of Environmental Economics and Management*, 50(3), 541–561.

 Heine, R. A., & Pinter, N. (2012). Levee effects upon flood levels: An empirical assessment [_eprint; https://onlinelibrary.wiley.com/doi/pdf/10.1002/hyp.8261].
- Heine, R. A., & Pinter, N. (2012). Levee effects upon flood levels: An empirical assessment [_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/hyp.8261] Hydrological Processes, 26(21), 3225–3240.
- Kahn, M. E. (2016). The Climate Change Adaptation Literature. Review of Environmental Economics and Policy, 10(1), 166-178.
- Kelly, D. L., & Molina, R. (2022). Adaptation Infrastructure and its Effects on Property Values in the Face of Climate Risk. Working Paper.
- Kuminoff, N. V., & Pope, J. C. (2014). Do "Capitalization Effects" for Public Goods Reveal the Public's Willingness to Pay? International Economic Review, 55(4), 1227–1250.
- Liao, Y. (, & Kousky, C. (2022). The Fiscal Impacts of Wildfires on California Municipalities [Publisher: The University of Chicago Press]. Journal of the Association of Environmental and Resource Economists, 9(3), 455–493.
- Mast, E. (2020). Race to the Bottom? Local Tax Break Competition and Business Location. *American Economic Journal: Applied Economics*, 12(1), 288–317. Muehlenbachs, L., Spiller, E., & Timmins, C. (2015). The Housing Market Impacts of Shale Gas Development. *American Economic Review*, 105(12), 3633–3659. Murfin, J., & Spiegel, M. (2020). Is the Risk of Sea Level Rise Capitalized in Residential Real Estate? *The Review of Financial Studies*, 33(3), 1217–1255.
- Ortega, F., & Taspinar, S. (2018). Rising sea levels and sinking property values: Hurricane Sandy and New York's housing market. *Journal of Urban Economics*, 106, 81–100.
- Remo, J. W. F., Ickes, B. S., Ryherd, J. K., Guida, R. J., & Therrell, M. D. (2018). Assessing the impacts of dams and levees on the hydrologic record of the Middle and Lower Mississippi River, USA. Geomorphology, 313, 88–100.
- Wagner, K. R. H. (2021). Adaptation and Adverse Selection in Markets for Natural Disaster Insurance. American Economic Journal: Economic Policy, Forthcoming. Walsh, P., Griffiths, C., Guignet, D., & Klemick, H. (2019). Adaptation, Sea Level Rise, and Property Prices in the Chesapeake Bay Watershed [Publisher: University of Wisconsin Press]. Land Economics, 95(1), 19–34.

References III

Wang, H. (2021). Flood Your Neighbors: Spillover Effects of Levee Building. Working Paper, 55.