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Abstract

Learning-by-doing and knowledge spillovers fundamentally shape industry equilib-
rium when cumulative production experience reduces costs. I estimate these learning
mechanisms in California’s residential solar installation industry using a dynamic struc-
tural model with endogenous entry and exit. A 1% experience increase reduces costs
by 0.21-0.36%, with in-market rivals’ experience generating 74% of own learning bene-
fits. Removing learning economies reduces installations by 10% and contracts market
structure. Policy effectiveness depends critically on learning magnitude and spillovers:
consumer subsidies leverage spillovers to expand adoption and industry size, while en-
try subsidies more effectively stimulate competition but at substantial fiscal cost.
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Learning-by-doing, the process through which cumulative production experience reduces
firms’ costs, is a fundamental force shaping industry evolution. When learning economies
are substantial and knowledge spills over across firms, industry dynamics differ markedly
from settings with static costs: firms face dynamic incentives to expand output today to
reduce their own future costs, while recognizing that their production also reduces rivals’
future costs through spillovers (Ghemawat and Spence, 1985). These learning dynamics
shape equilibrium prices, quantities, entry, and exit in ways that depend critically on both
the magnitude of learning and the extent of knowledge transfer across firms. Understanding
these mechanisms is essential for explaining observed industry outcomes and evaluating
policies that affect production incentives.

The presence of learning-by-doing and spillovers creates distinct equilibrium dynamics.
First, learning links current production to future costs across all firms, generating dynamic
production incentives beyond static profit maximization. Firms expand output not only
for current profits but also to reduce future costs through experience accumulation. Second,
spillovers create an externality: each firm’s production reduces rivals’ future costs, amplifying
industry-wide learning but weakening individual incentives to invest in learning. Third, these
forces interact with market structure: learning economies can facilitate entry by reducing
costs for all firms, while spillovers may discourage entry if incumbents capture learning
benefits from industry-wide production. Quantifying learning and spillovers is therefore
necessary to understand how industries characterized by experience-driven cost reductions
evolve and how policies that stimulate production affect equilibrium outcomes.

In this paper, I estimate learning-by-doing and knowledge spillovers in the solar photo-
voltaic (PV) installation industry and analyze how these learning mechanisms shape equilib-
rium outcomes and policy effectiveness. I develop and estimate a dynamic structural model
that endogenizes firms’ entry, exit, and production decisions while explicitly incorporating
learning and spillovers into firms’ cost functions and dynamic incentives. Using data on Cal-
ifornia’s residential solar market from 2008 to 2013, I find substantial learning-by-doing—a
1% increase in experience reduces costs by 0.21-0.36%—with large spillovers that amplify
industry-wide learning. Counterfactual analysis reveals these learning mechanisms are cen-
tral to observed market outcomes: removing learning economies reduces installations by
10% and substantially contracts market structure. The magnitude and spillover structure of
learning determine how policies affect equilibrium: consumer subsidies leverage learning to
expand adoption and industry size, with effectiveness depending critically on spillover rates.

Solar PV is a key climate technology due to its minimal life cycle emissions and ability
to displace fossil fuel generation. Policymakers have provided substantial subsidies for solar

adoption, with many programs targeting residential consumers. The non-trivial design and



construction of PV systems has created an industry of intermediary installation firms that
employed over 171,000 US workers in 2022—65% of total solar employment (Interstate Re-
newable Energy Council, 2023). Installers account for a growing share of final costs: Barbose
et al. (2022) estimate installers’ share of residential costs rose from 40% in 2006 to over 80%
in 2016. Despite this growing share, installation costs have fallen, with evidence suggesting
installer learning-by-doing (Bollinger and Gillingham, 2019; Fu et al., 2016; Nemet, 2019).

Despite accounting for most residential solar costs, relatively little is known about in-
stallers compared to manufacturers. California offers an ideal setting to study learning
dynamics in this industry. California hosts nearly half of all US residential PV systems
(Barbose et al., 2022) and experienced substantial subsidy-driven growth during 2008-2013.
The California Solar Initiative (CSI) provided $2.2 billion in consumer rebates, creating vari-
ation in incentives that enables identification of learning parameters while also providing a
natural application for evaluating how learning mechanisms affect policy outcomes.

I develop a dynamic structural model of California’s residential solar installation mar-
ket based on Ericson and Pakes (1995) that explicitly incorporates learning-by-doing and
spillovers into firms’ cost structures and decision-making. Combined with unique hardware
cost data, it allows me to separate installation costs, where learning occurs, from hardware
costs. Incumbent installers’ costs depend on both their own cumulative production and
rivals’ cumulative production, creating two key incentives: firms benefit from expanding
output today to reduce their own future costs, but they also recognize that their production
reduces rivals’ future costs through spillovers. In each geographic market, incumbent firms
choose output levels accounting for these learning effects and their impact on future competi-
tion. Consumer demand for differentiated installations follows the random coefficient nested
logit model of Brenkers and Verboven (2006). Incumbent firms compare expected discounted
future profits with idiosyncratic scrap values and make irreversible exit decisions, while po-
tential entrants make one-shot entry decisions based on expected profits and entry costs.
Firms’ strategies lead to a Markov Perfect Equilibrium, approximated by a Moment-based
Markov Equilibrium (Ifrach and Weintraub, 2017).

I estimate the model using system-level data on prices, rebates, capacities, and hardware
costs for 95% of California residential PV systems from 2008 to 2013. I obtain installation
data from Lawrence Berkeley National Laboratory’s “Tracking the Sun” database, including
timing, location, and installer identity. I combine these with system-level hardware costs
from the California Public Utilities Commission. The hardware cost data are critical for
isolating the installation cost component where learning occurs. [ aggregate data to the
county-half-year level for all installers operating from 2008 to 2013.

My estimation approach builds on two-step estimators of dynamic games (Bajari et al.,



2007; Collard-Wexler, 2013; Fowlie et al., 2016; Pakes et al., 2007; Ryan, 2012). In the first
stage, I estimate demand parameters, exit policy functions, and state transitions. I use
these estimates to flexibly approximate firms’ value functions following Barwick and Pathak
(2015); Barwick et al. (2025); Kalouptsidi (2018); Sweeting (2013). In the second stage, I
form moments from optimal quantity-setting and exit conditions to recover production cost
parameters (i.e, learning) and exit costs, then use entry likelihood to recover entry costs.

The model estimates reveal two main findings. First, I find substantial learning-by-doing;:
a 1% increase in effective experience decreases marginal installation costs by 0.21 to 0.36%.
The implied Spence coefficient—proportional cost reduction from doubling experience—
ranges from 0.13 to 0.22. While more modest than manufacturing learning curves, these
estimates are consistent with a service-intensive process where learning occurs through
improved coordination and permitting efficiency. Model-estimated average marginal costs
closely match independent NREL estimates from 2008 to 2013.

Second, learning spills over substantially across firms. A 1 unit increase in total in-
market rival experience generates 74% of the learning benefit of a firm’s own experience
increase. To explore mechanisms, I estimate specifications allowing differential spillovers
by experience source. I find larger spillovers from rivals in the same geographic market,
suggesting knowledge transfer operates through market-level mechanisms such as worker
mobility, observable installation practices, or passive learning by regulators.

Counterfactual simulations reveal how learning mechanisms shape equilibrium outcomes
and policy effects. First, learning-by-doing fundamentally determines market equilibrium:
removing learning economies while holding policies fixed reduces installations by 10%, in-
creases equilibrium prices persistently, and substantially contracts the number of active
firms. This demonstrates that observed industry outcomes reflect learning dynamics, not
just static production costs and demand. Second, spillover rates determine how production
affects industry-wide costs: high spillovers amplify the cost-reducing effects of aggregate
production, making demand expansion valuable for reducing future costs across all firms.
Consumer subsidies exploit this by increasing production, with effectiveness scaling with
spillover magnitude. Third, the interaction between learning and market structure creates
feedback: subsidies stimulate production, reducing costs through learning, which facilitates
entry and further production.

Finally, supply-side entry subsidies can leverage learning more effectively than demand
subsidies, but at substantial fiscal cost. Replacing the CSI with entry subsidies of varying
sizes dramatically increases active firms (by up to 62%) and installations. This expanded
competition drives lower prices and expanded adoption. While entry subsidies generate

significant benefits through increased consumer surplus and reduced exit, these gains are



offset by large government expenditures: entry subsidies reduce total welfare relative to the
CSI by $180 million to $1.3 billion, primarily reflecting fiscal costs of $2.1 billion to $8.4
billion. These results suggest that while entry subsidies effectively expand market size and
competition by directly stimulating learning, their substantial fiscal burden and different
political economy must be weighed against demand-side approaches.

These findings contribute to our understanding of how learning-by-doing and spillovers
shape industry equilibrium. Theoretical work establishes that cumulative experience affects
market outcomes (Arrow, 1962; Besanko et al., 2010; Cabral and Riordan, 1994; Fuden-
berg and Tirole, 1983; Spence, 1981), with Ghemawat and Spence (1985) showing non-
appropriable learning influences market structure when knowledge spills over across firms.
A large empirical literature estimates learning curves in aircraft (Benkard, 2000, 2004), ships
(Thompson, 2001, 2007; Thornton and Thompson, 2001), semiconductors (Irwin and Klenow,
1994), oil (Kellogg, 2011), automobiles (Levitt et al., 2013), and wind turbines (Covert and
Sweeney, 2022), with several finding spillovers (Covert, 2015; Irwin and Klenow, 1994; Kel-
logg, 2011; Thornton and Thompson, 2001). Bollinger and Gillingham (2019) estimate learn-
ing by solar PV installers with spillovers.! I build on this literature by embedding learning
and spillovers in a dynamic oligopoly model with endogenous entry and exit, allowing me to
trace how learning mechanisms affect equilibrium prices, quantities, and market structure.

My results also contribute to evaluating policies that affect industries with learning
economies. A large literature on solar PV subsidies focuses on adoption, finding consumer
subsidies increase installations but may not be justified by static environmental benefits
(Borenstein, 2017; De Groote and Verboven, 2019; Dorsey, 2024; Gillingham and Tsvetanov,
2019; Hughes and Podolefsky, 2015). Gerarden (2022) shows accounting for manufacturer
innovation can justify subsidy levels. van Benthem et al. (2008) and Langer and Lemoine
(2022) demonstrate via simulation that learning-by-doing can rationalize PV subsidy design.
I contribute empirical evidence that learning mechanisms—both magnitude and spillover
structure—fundamentally determine policy effects. Understanding these mechanisms is nec-
essary for predicting how subsidies affect adoption, market structure, prices, and welfare. The
results also speak to the growing industrial policy literature (Juhdsz et al., 2023), showing
that learning dynamics determine how demand subsidies affect industry size and structure,
complementing existing work on R&D subsidies (Bloom et al., 2002; Hall and Van Reenen,
2000) and production subsidies (Barwick et al., 2025; Kalouptsidi, 2018).

The rest of the paper is organized as follows. Section 1 provides an overview of the solar

PV industry and policy environment. Section 2 discusses the data I use in my analysis and

My model endogenizes entry and exit whereas Bollinger and Gillingham (2019) hold these fixed. T also
account for serially-correlated productivity shocks in production cost estimation.



provides some descriptive results on solar PV installers in California. Section 3 presents the
model. Sections 4 and 5 describe estimation and the model estimates. Finally, Section 6

presents results from counterfactual policy simulations while Section 7 concludes.

1 Economic and Policy Landscape

1.1 Solar PV Industry

The global solar industry has grown rapidly since the first commercial application of PV
technology on satellites in the 1950s. Solar modules consist of interconnected solar cells that
convert sunlight into electricity via the photovoltaic effect. Since Bell Labs created the first
practical solar cell in 1954, technological innovation and improved manufacturing efficiency
have substantially reduced solar module costs (Nemet, 2019). From 1975 to 2021, solar
module prices declined over 99%, from $115 to under $0.5 (2021 USD) per watt (IRENA,
2022; Nemet, 2009). Global solar capacity grew 1000-fold from just under 1 gigawatt to over
1 terrawatt from 2000 to 2022 (IRENA, 2023).

Solar PV is a modular technology manufactured at-scale, enabling applications from
utility-scale generation to small residential systems, the focus of this paper. Residential
PV installation requires non-trivial design and construction. Rooftop installation, which
accounts for 98% of residential use in the US, introduces site-specific features requiring
idiosyncratic design. Practical installation challenges and technical electrical components
require specialized labor. These features combined with convoluted regulatory environments
involving varying permitting and inspection requirements across jurisdictions and often gen-
erous but difficult-to-navigate incentive programs have given rise to an industry marketing
PV installation as a service. Installation firms source hardware inputs, design and construct
systems, and manage permitting and inspection for households.

While solar panel costs have declined dramatically at a global scale, an increasing share
of end consumer costs is attributable to local installers. Figure 1 shows Lawrence Berkeley
National Lab data on solar PV hardware costs and median installed costs for US residential
consumers over 2000-2021. The installer share (installation labor, permitting, and markups)
more than doubled over 2006-2016, going from 40% to over 80% (Barbose et al., 2022).

Despite accounting for a growing share of final costs, these “soft” costs have fallen in
absolute terms in recent years, though far less than hardware costs (Fu et al., 2016). Evidence
suggests soft cost reductions stem from installer process improvements, inter-firm learning,
and streamlined policies (Bollinger and Gillingham, 2019; Nemet, 2019; Nemet et al., 2017).
Existing estimates struggle to separate installer costs and markups, though Bollinger and

Gillingham (2019) addresses this. Determining the magnitude and sources of installation-



Figure 1. PV System Installed Cost Components, 2000-2021
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Notes: This figure shows installed cost and hardware component cost per watt for residential PV systems
in the US from Lawrence Berkeley National Lab’s “Tracking the Sun” report (Barbose et al., 2022).
Hardware costs include PV modules and inverters. Bars show the share of installed cost attributable to
non-hardware costs (installation labor, permitting, markups, etc.).

specific cost reductions is a key objective of this paper.

1.2 California’s PV Policy Environment

California hosts nearly half of all US residential solar PV systems (Barbose et al., 2022).
While climate drives adoption, generous policies also play a major role. Since the late 2000s,
California households have been eligible for adoption incentives at state and federal levels.

The California Solar Initiative (CSI), the state’s largest direct rebate program, ran from
2007 to 2013 with a $2.2 billion budget, providing cash rebates to customers of three main
investor-owned utilities (IOUs). The CSI rebate schedule was designed explicitly with
learning-by-doing in mind: rebates started at $2.50 per watt and stepped down over 10
rate levels based on cumulative installed capacity in each IOU service area. This design
assumed industry experience would reduce costs, thereby reducing rebates needed to incen-
tivize adoption. Appendix Figure Al shows spatial and temporal variation in CSI rebates
across [OUs, with rebate steps changing at different times based on cumulative capacity.
These sharp changes provide plausibly-exogenous variation in net-of-rebate prices useful for
estimation.

Solar-installing households have also been eligible for a 30% federal investment tax credit

(ITC) since 2007 and net energy metering (NEM) crediting excess generation at retail rates.



See Appendix A.2 for full policy details.

Beyond reducing emissions, an express goal of the CSI was to “establish a self-sufficient
solar industry” (California State Senate, 2006). A primary motivation of this paper is eval-
uating this objective by estimating the extent to which the CSI reduced costs and changed

industry structure.

2 Data and Descriptive Evidence

2.1 Data Sources

I construct a dataset tracking installation firms’ prices, market shares, hardware costs, ex-
perience, and entry-exit decisions across county-level markets and half-yearly periods from
2008 to 2013. This section summarizes key data sources and restrictions; see Appendix A
for a more detailed discussion of these data.

I obtain installer data from Lawrence Berkeley National Laboratory’s “Tracking the Sun”
database (Barbose et al., 2022), which compiles system-level data from state agencies and
utilities. The database includes installation date, system size, prices, rebates, location,
installer identity, and hardware specifications. California data cover over 98% of state in-
stallations. I apply several restrictions, focusing on residential rooftop systems below 20 kW
with observed prices and rebates, excluding self-installed and third-party-owned systems.

I obtain hardware cost data from the California Public Utilities Commission, allowing me
to separate hardware costs from installation costs. Coverage is most complete for 2008-2013:
I match hardware costs to over 79% of systems in this period. Given hardware costs are
essential for isolating the installation component where learning occurs, I restrict the sample
to 2008-2013.

I aggregate system-level data to the county-half-year level for each installer, calculating
average prices, installed capacity, rebates, and hardware costs. I use full 2000-2021 data to
calculate each installer’s cumulative experience and identify entry and exit during 2008-2013.
The final dataset includes roughly 10,000 observations representing over 94,000 installations
by 500 installers across 33 counties over 12 half-yearly periods. Additional data sources
include Census ACS data for market size estimation and demand heterogeneity, and EIA

electricity rate data for estimating net metering benefits.

2.2 Descriptive Evidence

Figure 2 shows time series variation in key measures of California residential PV installation

industry activity for 2004-2013, covering the main CSI period and three prior years.



Figure 2. California Residential PV Installation Activity, 2004-2013
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Notes: This figure shows time series variation in California residential PV installation industry activity
over 2004-2013: cumulative installed capacity in megawatts (top left), total revenue in million 2013 USD
(top right), statewide Herfindahl-Hirschman Index based on installed capacity (bottom left), and number
of statewide incumbent firms (bottom right). Data are for rooftop, household-owned installations from
LBNL’s “Tracking the Sun” database (Barbose et al., 2022).

Like the global solar industry, California’s PV industry experienced dramatic growth
starting in the mid-2000s. From 2007 to 2013, the main period of the CSI, total installed
residential PV capacity increased nearly 10-fold, from 60 to 600 MW. This rapid capacity
growth corresponded with expansion of the installation industry: both statewide revenue
and the number of operating firms increased rapidly during this period. Installer industry
concentration remained low, with a statewide Herfindahl-Hirschman Index between 100 and
540 from 2007 to 2013.

While these trends are suggestive, they provide limited insight into the mechanisms
through which PV policy shaped industry growth. To explore potential learning spillovers, I
estimate the relationship between rivals’ cumulative experience in a county and an installer’s
own costs plus markups (measured as installation price per watt net of hardware costs). I
control for county and year fixed effects to account for time-invariant market characteristics
and aggregate time trends. Figure 3 shows a strong, negative relationship between rivals’

experience and own costs plus markups over 2007-2013, consistent with learning spillovers



Figure 3. Rivals’ Experience and Own Costs, Markups, 2007-2013
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Notes: This figure shows the estimated relationship between rivals’ normalized cumulative installation
experience in a county and a firm’s costs plus markups (installation price per watt net of hardware
costs) over 2007-2013. The figure plots mean residuals conditional on county and year fixed effects.

reducing installation costs.?

While this descriptive evidence suggests learning spillovers may be important, it cannot
quantify their magnitude or identify specific mechanisms. To precisely analyze how learning-
by-doing and knowledge spillovers affect the PV installation industry and the impact of

policy, I develop a structural model of installer entry, exit, and production.

3 Model: Entry and Exit with Endogenous Learning-by-Doing

I develop a model of firm entry, exit, and quantity-setting based on Ericson and Pakes
(1995)’s dynamic oligopoly framework.

In each period t and market m € {1,..., M}, there are j € {1,..., J,;} incumbent firms
facing static consumers ¢ € {1,..., N,,;} who demand differentiated solar PV installation
services. Incumbents dynamically choose installation quantities conditional on marginal costs
and beliefs about future learning. Incumbents then choose whether to exit by comparing
expected discounted future profits with an idiosyncratic scrap value, while a market-specific
pool of potential entrants j € {1,..., N,,} make one-shot entry decisions based on expected
discounted future profits and an idiosyncratic entry cost. At each period’s end, entry and exit
decisions are implemented and the state evolves. Firms’ strategies lead to a Markov Perfect

Equilibrium, which I approximate using a Moment-based Markov Equilibrium concept.

2This descriptive relationship suggests rivals’ experience may reduce firms’ costs through mechanisms like
worker mobility, visibility of rivals’ practices, or regulator learning that benefits all firms in a market. The
structural model in Section 3 formalizes and estimates these spillover effects.



A period is a half-year and a market is a county. Firms have an infinite horizon and share
discount factor 8. Incumbent installer j in market m at time ¢ is differentiated by its state,
which includes a common knowledge component sj,,,; and a private component. The private
component includes a shock to the firm’s selloff value ¢;,,; and an unobserved productivity

shock Kjp¢. The common knowledge component is
/
Simt = [Ejmt Eime Njme

where Fj,,; is the installer’s market-specific experience; §;,,; is installation service quality
derived from the demand system; and hj,, is hardware input costs. The market state s,
is the union of all incumbent firms’ common knowledge states plus two aggregate state
variables: demand state d,,; and market-level inclusive value I,,;, which capture revenue
potential and competition intensity (Aguirregabiria et al., 2021). Potential entrants observe

the market state and are differentiated by an idiosyncratic entry cost shock wj.

3.1 Demand for Solar Installations

I estimate consumer demand using the random coefficient nested logit (RCNL) model of
Brenkers and Verboven (2006) and Grigolon and Verboven (2014). Incumbent firms face
static consumers i € {1,..., Ny,;} who demand solar PV installation services. I assume a

static demand model reasonably approximates consumer behavior.?

Each consumer pur-
chases installation from an observed incumbent j € {1,..., J,,;} or does not install (j = 0).

Conditional indirect utility from choosing installer j in market m in period ¢ is
Wigmt = & Djmt — Tjmt) + @ Xjmt + Eme + & + & + Eijmt (1)

where X+ is a K x 1 vector of observable firm characteristics; p;: is retail price per watt;
Tjme 18 Tebate per watt; &n; is firm’s market-time-specific unobserved quality; éj allows
mean valuation of unobserved characteristics to vary by product; & allows mean utility from
installation to vary over time; and &;;,,; is an idiosyncratic preference shock. I normalize
prices and rebates by capacity for consistency across system sizes.

Following Berry (1994), I decompose the idiosyncratic preference shock using nested logit
distributional assumptions. Define two groups ¢g € {0,1}, where g = 1 includes incumbent
installers and g = 0 the singleton no-installation option. Then &;jmt = Cigmt + (1 —1)€ijme

where €, s 1.i.d. Type 1 Extreme Value, ;g has the unique distribution such that &;;,, is

31 develop and estimate a dynamic demand model in Appendix B and find my static demand estimates
provide a reasonable reduced form.
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ii.d. Type 1 Extreme Value, and 0 < n < 1 is a nesting parameter proxying for within-group
preference correlation. I normalize non-installation utility such that w;g e = €iome-

Taste heterogeneity is parameterized as of = a,/y; and af = oy, + oy, log(y;) for attribute
k, where ay,, ay, oy are parameters and y; is consumer income.* This allows me to re-write

conditional indirect utility as
Uijmt = Ujimt + Higmt + Cigmt + (1 _n)gijmt

where

_ _ oP
Vjmt = O/ijt + &me + & + & and pijpe = ?(pjmt — Tjme) + U/ijt log(v;)

Market share of installer 7 in market m in period t is
N
_ 1 \ exp ((Ujmt + jme) /(1 — 77)) exp Ligmt
M = 3 D 7 (2)
mt iy exXp (Iigmt/(1 - 77)) €xp Limt

where I, and I, are the McFadden (1977) inclusive values.”

3.2 Incumbent Cost Structure and Payoffs

After observing market state s,,;, incumbents privately observe productivity shock x;,: and

choose installation quantity gj: at cost mc;(s,) per watt. Marginal production cost is
T ~ 7
mcj(smt;ec) =y X (hjmt> X <Ej (Smt;9 )> S efimt (3)

where N, is exogenous hardware cost per watt; Ej(smt; 0F) is firm j’s “effective” experience,
a function of own and rivals’ experience with parameters #¥; v is the learning exponent; 7
is the hardware cost pass-through parameter; ¢, scales the cost function; and K, is an
unobserved productivity shock.® The parameter vector is 6¢ = (co, 7, 6%, 7).

This specification follows unbounded learning models standard in the learning-by-doing
literature (Benkard, 2000; Covert and Sweeney, 2022; Levitt et al., 2013; Thornton and

Thompson, 2001). Defining marginal cost as a function of effective experience allows me to

4This of parameterization approximates Cobb-Douglas indirect utility (Berry et al., 1999).
5The inclusive value of the inside goods is I;1,m¢ = (1 —n) log Z'j]zi exp (((%-mt + fijme)/ (1 — 77)) and the

inclusive value of all goods is I, = log(1 + exp Ij1me). Thus, to get the McFadden (1977) inclusive value at
the market-time-level, I simply sum across individuals in the market: I,,,; = ZZI\;’? it
°T index functions by j to indicate firm-specific values, e.g., mc;(sm¢). Since state vector s, includes

each firm’s state, this avoids duplicating s;,,; in function arguments.
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test different models of experience accumulation. One model I test is

Ej(smt;é’E) = Ejyu + 07 (ZEkmt> (4)

k#j

where market rivals’ cumulative production has a potentially different marginal contribution
to firm j’s effective experience than own cumulative production. The experience parameter
6F is normalized with respect to own experience.” I report estimated experience parameters
from several models of experience accumulation in Section 5.

An incumbent active in period t in market m earns product market profits
7Tj(8mt, jmt; 0°) = (pj(smtu Qjmt) - ij(Smt; 90)) qjmt

where p;(Smt, ¢jme) is firm j’s price per watt, defined by the inverse demand curve from
Section 3.1.

The ex-ante value function for incumbent j in market m at time ¢ prior to realization of
¢jmt 18

Vi(sm) = Eq {wj(smg + max{gbjmt,C'Vj(smt)}] (5)

where CV;(smt) = E[V;(Smet1)|Sme, @] is the continuation value (expected discounted fu-
ture profits with expectation over state variable transitions); ¢, is the vector of optimal

quantities; and /3 is the discount factor.

3.3 Product Market Game

Incumbents compete each period by choosing installation quantities to maximize current
period profits plus expected continuation value. Firm j in market m in period ¢ solves:
dimt

max (wj<smt,qjmt> B / vj<smt+1>dF(smt+l|smt,qmt>)

where F'(Spi41|Smt, @mt) 18 the transition kernel for state s,,; conditional on quantities ;.

The optimal quantity satisfies:

0 0
0 = —7(Sme, Gjme) + —ﬁ/‘/}(Smt+1)dF(Smt+1|5mt7th) (6)
anmt . anmt P
marginal s\t;tic profits dynamic ‘?rrnarkdown”

I normalize all experience terms by total industry experience in H1 2008, ensuring readability of 6%
parameters and improving numerical stability.
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The first term is the standard static quantity-setting condition; the second captures the
incentive to raise production today to reduce future costs and any strategic considerations
regarding impacts on rivals.® The first term can be written:

a apj(smta Qjmt)
T, Sm, m - ] Sm, m + - a
aqjmt ]( ty qj t) pg( ty dj t) anmt

Gt — mes(si8)  (7)
This standard condition trades off marginal benefits and costs in the current period, account-
ing for both the direct effect of producing a marginal unit and the inframarginal impact of
reducing equilibrium price on all units supplied.

The dynamic markdown describes the marginal effect of current production on discounted
future profits. As noted by Berry and Pakes (2000) and Covert and Sweeney (2022), changes
in gjm: affect the transition distribution F(s,41|Smt, gme) only through experience evolution
E; i, not the value function V' (+) itself. Since dF'(Sye+1|Smt, Gmt) > 0 for any g, the dynamic

markdown simplifies to:

0
anmt

0
ﬁ/Vj(Smt+1)dF(Smt+1|Smt,th) :ﬁ/‘G(SmtJrl)—aq dF<Smt+l|Smt7th)
gmt

Jé)
_,dF(Smt+l|Smt th)
aq mt ’
= Vi m . dF m mt; Ym
s [ e ””( AF Gmartlomen ) ) rtlome ane)

)
dF(S t+1|3 ty q t)
ajmt m mity 4m
V}(Smtﬂ) ( 4

dF(Smt+1|5mta th)

= BE

Smit, th] (8)

This simplified form shows firm j’s dynamic markdown is the expected benefits at a given
future state realization s,,;11 multiplied by the marginal change in probability that this
state is realized from changing g;,;. Combining these forms for marginal static profits and
dynamic markdown provides a feasible approach to writing firms’ quantity-setting condition

as a function of data and estimable parameters, outlined in Section 4.

3.4 Exit and Entry

After product market decisions, incumbents draw a private scrap value ¢;n;. The optimal
exit policy follows a threshold form: firm j exits market m in period t if the scrap value
exceeds its continuation value, CV;(sy,:). With iid. scrap values, the firm exits with

probability p¥(sm):

pj(sm) = Pr ((bjmt > C’Vj(smt)) =1-F, (CVj(smt))

81 follow Covert and Sweeney (2022) in referring to the second term as the “dynamic markdown.”
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where Fj, is the CDF of ¢j,,;. I assume ¢, LRS- Exponential(1/0y,), implying:

T . _ O‘/;(Smt)
Pj(Smi;04) = eXp( o )

(9)
Simultaneously, NN,, potential entrants observe state s,,; and a private i.i.d. entry cost
wjm: before making a one-shot entry decision. If potential entrant j € {1,..., N, } enters, it
pays w;m¢ and becomes an incumbent next period; otherwise it disappears with zero payoff.
Entrants are endowed with quality and hardware cost drawn from the empirical distribution
of observed states and start with zero experience, Ej,,; = 0.
The optimal entry policy follows a threshold form: potential entrant j enters market m

in period ¢ if entry cost wj,,; is below the value of entering:
wjmt S VEj(Smt) = BE [‘/}(Smt—i—lﬂsmt; X;mt = ]-]

where x5, equals 1 if potential entrant j enters and 0 otherwise, and the expectation is
over the entrant’s information set, which includes state s,,,. With ii.d. wj,,, the entry
probability is:

pj(smt) = Pr (wjmt < VEj(smt)) = F, (VEj(smt))

where [, is the CDF of wj,,;. I assume wj,, R Exponential(1/0,,), implying:

Pi(Smt;0w) = 1 — exp (—M) (10)

Tu
3.5 State Transitions

I assume hardware cost (hj,:) and installation quality (§;,:) are exogenous and evolve
stochastically according to a first-order Markov process. For hardware costs, this implies
installers are price-takers in the upstream input market, reasonable given many module and
inverter manufacturers. Data limitations preclude endogenizing quality.

The remaining state variables—aggregate demand (d,,;), market-level inclusive value
(Imt), and experience (Ej,,;)—are endogenous and evolve from the demand model and firm

quantity-setting actions.

3.6 Equilibrium

A Markov-Perfect Equilibrium in market m at period ¢ includes policies governing produc-

tion, exit, and entry (qmt,p;?(smt),pj(smt)), value functions Vj(sp), and prices pj,: such
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that firms’ decisions satisfy (6), (9), and (10). Equilibrium prices are generated by the in-
verse demand function and equate demand with supply. Incumbent value functions satisfy
(5) and all firms employ equilibrium policy functions to form expectations. Equilibrium
existence follows from Ericson and Pakes (1995) and Doraszelski and Satterthwaite (2010).

The state variable s,,; is high-dimensional when many firms are active. To reduce com-
putational burden, I assume firms track only market-level moments of rivals’ state variables
rather than every rival’s full state. Ifrach and Weintraub (2017) provide a detailed treat-
ment of this Moment-based Markov Equilibrium approach, similar to oblivious equilibrium
(Benkard et al., 2015; Weintraub et al., 2008), which approximates Markov-Perfect Equi-
librium in industries with many firms and has been widely employed (Barwick et al., 2025;
Gerarden, 2022; Jeon, 2022; Vreugdenhil, 2023; Wollmann, 2018).

A remaining issue is nonstationarity in the regulatory environment. While numerous
overlapping adoption subsidies evolve over the study window, explicitly modeling firms’ be-
liefs about future subsidy distributions substantially complicates equilibrium computation.
I follow standard practice and assume firms behave as if subsidy policy changes are unan-
ticipated, one-time changes not repeated in the future (Aguirregabiria et al., 2021; Ryan,
2012). As noted by Barwick et al. (2025), one approach to proxy for dynamic regulatory
environments is using lower discount rates so future payoffs matter less for current decisions.

I use this approach to test robustness of my permanent subsidy change assumption.

4 Estimation Strategy

I estimate the model in two stages. The first stage estimates the demand system, exit policy
functions, and state transition processes. The second stage jointly estimates production cost

parameters governing learning economies, exit costs, and entry costs.

4.1 First Stage: Demand Estimation, Exit Policies, and States

Demand Estimation I estimate demand following Berry et al. (1995)’s nested fixed point
procedure and Conlon and Gortmaker (2020)’s best practices, adapted to the RCNL model
of Brenkers and Verboven (2006) and Grigolon and Verboven (2014). I derive a GMM
estimator from the moment condition E[Z),£(6))] = 0, where 6} = (a,, o/, 0,n) are demand
parameters, £(67) solves the system of market shares in (2), and Zp are instruments. The
GMM estimator is

6P = arg no};n (g(QD)/ZD)W_l (ZBE(QD»
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where £| (6P) is the sample analog of £(-) and W is a positive definite weight matrix.

The installer characteristics that enter Xj,,; include a measure of the efficiency of PV
modules an installer offers, the number of distinct PV module types an installer offers, and
the half-yearly average electricity price in a county. Including a firm fixed effect, &;, in (1)
absorbs time-invariant installer characteristics and the period fixed effect, &, accounts for
aggregate trends in mean preferences for solar over time. In estimation, I take 200 draws of
household income from the annual American Community Survey PUMS per county-period.

I adopt many of the best practices for differentiated demand estimation recommended
by Conlon and Gortmaker (2020). I employ the standard two-step procedure for GMM
estimation, adjusting the weight matrix in the second step to account for clustering at the
county-level. T solve the system of market shares defined by (2) using SQUAREM with
a dampened version of the Berry et al. (1995) contraction mapping based on Grigolon and
Verboven (2014). I calculate standard errors using the GMM formula, clustering observations
at the county-level to allow for within-market correlation in unobserved quality.

Identification of demand parameters 0 requires instruments addressing price endogeneity
and identifying parameters governing consumer heterogeneity and demand curvature. Prices
correlate with unobserved quality ;,,,+ as firms observe product valuations when setting prices
(Berry and Haile, 2014). Tuse CSI rebates per watt and county-level electrician /roofing wages
as cost shifters (Gillingham and Tsvetanov, 2019; Pless and Van Benthem, 2019), plus rivals’
non-price characteristics X_j;,,,; following Berry et al. (1995).

Identifying the nest parameter 1 and random coefficient parameters o that govern de-
mand curvature requires exogenous variation in the distribution of consumer valuations for
inside goods. The number of active firms and lagged installations in other counties shift
the distribution of inside-good market shares, identifying 7. Following Miller and Weinberg
(2017), mean income interacted with product characteristics Xj,,; leverages demographic
variation to identify o. This approach identifies both demand elasticity (mean price sensi-
tivity) and demand curvature (heterogeneity in price sensitivity), which jointly determine

how firms’ pricing responds to cost shocks and mergers.

Exit Policy Function [ estimate exit probabilities using a logit regression:

_oexp (hj(smt))
1+ exp (h;(sme))

Pr(X?mt =1 |8mt)

where x7,,, equals 1 if firm j exits market m in period ¢ and h;(s,.) is a flexible function of
states. Following Gerarden (2022), I select h;(s,:) via LASSO with k-fold cross validation,
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then re-estimate the logit model with the selected regressors.” I denote the resulting fitted

exit probabilities as p7, ;.

State Space Following the Moment-based Markov Equilibrium concept of Ifrach and
Weintraub (2017), firms track moments of rivals’ states rather than every rival’s full state
vector. Firms observe their own states (Ejt, Ejme, Rjme) Plus within- and out-of-county aver-

ages of rivals’ hardware cost and quality, total rival experience in-county (£, = > 1. Eymt)

and out-of-county (E9,,, = >, tm doe 4 Exi), plus aggregate demand d,,,; and inclusive value

jgmt

I,,;. This yields an 11-dimensional state vector per firm.

State Transitions I model exogenous states (hardware cost hj,; and quality &) as
AR(1) processes with county-specific intercepts following Aguirregabiria and Mira (2007).
Experience evolves deterministically: Fjptr1 = Ejme + @jme, with entrants having Ej,,; = 0.
Following Aguirregabiria et al. (2021), Gowrisankaran and Rysman (2012), and Barwick and
Pathak (2015), I assume firms believe aggregate states (demand d,,,; and inclusive value I,,;)

follow AR(1) processes.

4.2 Second Stage: Learning, Exit, and Entry Parameters

I now estimate production cost parameters governing learning (6¢), exit costs (o), and entry
costs (0,). I assume a half-yearly discount factor corresponding to an annual discount factor
of 0.875 following Gerarden (2022) and De Groote and Verboven (2019).1°

Value Function Approximation FEstimation requires solving for firms’ value functions
V;(smt), which enter the optimality conditions (6), (9), and (10). Since scrap values ¢,,; are

i.i.d. exponential, the value function prior to realizing ¢;,,; is

Vi(s$me) = Eg[mj(sme) + max{djme, CVj(Sme)}]
= mj(Smt) + P} ($me) 09 + CV(Smt) (11)

where I use the memoryless property of the exponential distribution (Pakes et al., 2007).

Following Barwick et al. (2025), I approximate the V;(s,,) using L basis functions b} (s,n):

L L

Vi(sme) 2 A (sime) CVj(smt) 2 B)  ME[B] (11| 5] (12)

=1 =1

9Candidate regressors include quadratic polynomials of state variables, their pairwise interactions, and
county and period fixed effects. See Appendix C for details.
Ryan (2012) assumes an annual discount factor of 0.9.
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where \; are coefficients to be estimated. This approach avoids computationally-intensive

state discretization and is feasible despite the value function’s nonlinearity in parameters.'!

Production and Exit Cost Estimation Since production cost and exit parameters are
functions of firms’ value functions, which themselves depend on these target parameters,
I jointly estimate both sets via non-linear GMM. I derive moments from the conditions
governing optimal quantity setting and exit.

I re-express the optimal quantity condition (6) by combining the static markup (7) and

dynamic markdown (8) with marginal production costs (3):

0 = pjme + (D)) X MSjme — M (Sm; 09) + BEV;(Sme1; A) X (St )] (13)

where pj;,,; and ms;,,; are price and market share (from data); (A;4)(;;) is the diagonal ele-

(4.9)
ment of the inverse own- and cross-price derivative matrix (from first-stage demand estima-
tion); mc;(Sme; 6°) is marginal production cost per watt as a function of effective experience,

hardware costs, and parameters §° via (3); Vj(sm+1; A) is the approximated value function;
o)
8qjmt

dF(Smt+1 |5mt 7th)

dF (Smt41|Smtqmt)

and € (Smt, Gmt) = captures the sensitivity of state transitions to firm
J’s quantity choice.

The dynamic markdown term €2;(-) has a closed form since the only future state variable
directly affected by firm j’s current quantity is its own effective experience. Define the

transition kernel for effective experience as dG(Ej+1|Et, i), where E; and ¢, are vectors of

cumulative production and quantities for all incumbents. Under the experience accumulation

model (4), dG(Ejms1|Er, ¢t) = (Ejme + Qjme) + 07 <Zm > ki (Erme + kat)>7 which yields:

- %dG(Ejth |Et, qr) - 1
jmt = =
G (Ejmi1| Er, qv) (Bt + @jot) + 0F (zm s (B + qkmt)>

This closed form allows me to calculate the expectation in (13) using current states and
quantities, estimated state transitions, and value function coefficients .

I recover productivity shocks kjp,, from (13) as a function of production cost and value
function parameters (0, \). Following standard practice for production function estimation
(Benkard, 2000; Olley and Pakes, 1996), I assume &;,,,s follows an AR(1) process:

ijt<907 Aap) = ijt(eca >\) - p'%jmtfl(eca )‘) (14)

HGee Appendix E for basis function construction, expectation approximation, and coefficient estimation
details.
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To form moment conditions for estimation, I interact the innovation with instruments Zj,,;:

E[ngtyjmt(ec, )\,p)} =0 (15)
where p is the serial correlation coefficient to be estimated. I discuss instrument selection in
Section 4.3. Accounting for serial correlation prevents biased learning estimates since firms
with persistent positive productivity shocks accumulate more experience while having lower
marginal costs, leading to overestimated learning without this correction.

For the exit cost parameter oy, I derive a moment from the optimal exit condition by min-
imizing squared differences between fitted exit probabilities (from first-stage estimation) and
model-implied exit probabilities exp (—M> Defining ;¢ (04, A) as this difference,

o
the moment condition is:

E [awjmt(o-dh )‘>

A9 il )| =0 (10

Stacking moments (15) and (16) allows joint estimation of target parameters @ = (6, p, 0,).
Since these moments depend on value function coefficients A\, which themselves depend on
(6°,04), I follow Sweeting (2013) and iterate between solving for A given @ and updating 0
via two-step GMM until convergence. Specifically, at iteration i with parameter guess él
(1) solve for A that minimizes Bellman violations; (2) update 0" via GMM using stacked
moments with weight matrix W; (3) check L' norm convergence. I calculate standard errors

via non-parametric bootstrap with 200 samples drawn by resampling entire market histories.

Entry Cost Estimation Using estimated value function coefficients, I compute entry val-
ues for potential entrants by calculating expected next-period state variables using observed
aggregate states and assuming entrants draw quality and hardware cost from the empirical
distribution of observed states with zero initial experience. I average over 1000 draws from
estimated state transition processes.

Since the number of potential entrants is unobserved, I follow standard practice and
assume it is some multiple of the median, mean, or maximum observed entrants per market
over the sample period, reporting estimates for several specifications. I estimate the entry
cost parameter o, via maximum likelihood (which is more efficient than moment-based

approaches) using the log likelihood:

10g(f (X5mis 0w))

— e _ _VEJ'(Smﬁj‘) (1 e VEj(smt;;\) (17)
S [ Xmelog [ 1—exp | ——220 ) ) — (1= ) | —L2

j7m7t
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where X5, equals 1 if potential entrant j enters market m in period ¢. Standard errors are

computed via non-parametric bootstrap with 200 samples clustered by county.

4.3 Identification of the Dynamic Parameters

Identification of production cost parameters relies on the AR(1) productivity shock model
(14). Given this model, variation in prices, quantities, and exit decisions across firms with
different hardware costs and experience vectors identifies the base cost, learning exponent,
effective experience, and serial correlation parameters.

The instruments Zj,,; in (15) include predicted own experience, predicted rival experience,
lagged hardware costs, a time trend, and lagged installation-adjacent wages. I construct pre-
dicted experience instruments by estimating a reduced-form demand model regressing log
market shares on rebates, solar radiation (GHI), electricity prices, installer fixed effects,
year fixed effects, and commuting zone fixed effects, instrumenting inside shares with the
number of firms and rival experience. Fitted values yield predicted quantities and thus pre-
dicted cumulative experience. Predicted rival experience is the sum of other firms’ predicted
experience in the same county-period. These instruments are valid since v, is serially
uncorrelated by construction and orthogonal to the exogenous demand and cost shifters.
The instruments provide identifying power: predicted experience correlates with marginal
costs but not current innovations (being based on exogenous shifters); lagged hardware costs
and wages provide exogenous cost variation; the time trend captures aggregate technological
change. See Appendix D for details on construction, validity, and relevance.

Identifying spillover parameters is challenging due to potential unobservable factors (e.g.,
county-level demand shocks) correlated with both a firm’s costs and rivals’ experience, which
could bias spillover estimates upward. Given these challenges, I explore counterfactual ro-
bustness by simulating scenarios with lower spillovers in Section 6. Identification of exit and
entry parameters follows Hotz and Miller (1993), who show choice-specific value function

differences are identified from observed choice probabilities.

5 Model Results

I present the main model estimates in this section. I begin by presenting the first stage
estimates (Section 5.1) before turning to my estimates of the dynamic model primitives

(Section 5.2). I then discuss several robustness checks (Section 5.3).
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Table 1. Estimated Demand System Parameters

NL-1 RCNL-1 RCNL-2
(1) (2) (3)
Param Est SE Est SE Est SE

Price/Income ap —8.513 1.063 —7.718 1.187 —14.69  3.661
Nesting Parameter n 0.636  0.026 0.632  0.033 0.630 0.071
Total Experience Qi —10.835 13.061
Solar Irradiance 9 1.270 0.615
log(Income) x Constant 00 2.917 0.816
log(Income) x Total Experience o1 2.192 2.437
log(Income) x Solar Irradiance 09 —-0.282  0.132
Firm, Year, CZ FE Yes Yes Yes
Income Distribution Yes Yes
Median Own Price Elast. -3.76 —3.46 —2.80
Median Outside Diversion 36.70% 37.06% 37.23%

Notes: Estimation follows the procedure outlined in Section 4.1. There are 10,247 observations at the
firm-county-half-year level. The nested logit model NL-1 divides price by county-year-half mean income
whereas the random coefficients nested logit models RCNL-1 and RCNL-2 use the full sample of incomes
drawn from the ACS PUMS to estimate price sensitivities and other income interaction terms. Total
Experience is a firm’s cumulative quantity of installations in a county and Solar Irradiance is a measure
of observed solar radiation in a given county-year. Standard errors are clustered at the county-level.

5.1 First Stage Estimates

Consumer Demand Table 1 presents parameter estimates and standard errors clustered
by county for the consumer demand system. Column (1) estimates a nested logit (NL)
model that removes individual-level heterogeneity in taste parameters. Columns (2) and
(3) correspond to different versions of the full RCNL model outlined in Section 3.1. To
ensure comparability across models, I divide price by county-quarter mean income in the NL
specification. All specifications include firm, year, and commuting zone fixed effects.

The price coefficients () are precisely estimated with the expected sign across all spec-
ifications. Median own-price elasticities range from -2.80 to -3.76 and are smaller when
including observable firm attributes and income interactions. Market price elasticities are
substantially lower than own-price elasticities, indicating substitution primarily occurs across
installers rather than on the extensive margin. The nesting parameter (n) is large and pre-
cisely estimated across all specifications. Diversion ratios imply that not installing is the
second-best choice for around 37% of consumers.

The coefficients on observable firm attributes are imprecisely estimated in the RCNL
model with income interactions. Higher income households appear to derive greater utility
from installers with more cumulative experience and from high solar irradiance areas, while

lower income households appear to derive lower utility from high solar irradiance. These
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results should be interpreted with caution. Given that I do not endogenize firms’ product
attribute decisions and given the desirable substitution patterns of the RCNL model, I use
column (2) estimates in the second stage and all counterfactual simulations. I plot the
distribution of own price elasticities of demand estimated using my preferred demand model
and compare these to estimated elasticities from the literature in Appendix Figure G3.'?
To test the robustness of my assumption that a static demand model offers a reasonable
approximation to consumer behavior, I develop and estimate a dynamic demand model in
Appendix B. Estimates from this dynamic demand model are similar in magnitude—the
median elasticity is -2.07—and demonstrate a time pattern consistent with analogous static

estimates as shown in Figure B1.

Exit Policy Function and State Transitions As outlined in Section 4.1, I select can-
didate regressors for the logit regression of the discrete exit decision via LASSO. Of 242
candidate regressors, this process selects around 80 non-zero regressors with a deviance of
12.34%. As shown in Appendix Figure C2, fitted exit probabilities are larger for exiting
incumbents than continuing ones: 14.88% versus 7.72%.

I report AR(1) transition process estimates for aggregate state variables (demand state,
inclusive value, and county-quarter average price) in Appendix Table G1 and for firm-level
state variables (quality, hardware cost, and firm price) in Appendix Table G2. For each state
variable, I report specifications with and without county-specific intercepts. All estimated

transition processes are stationary.

5.2 Second Stage Estimates

Production and Exit Cost Estimates Table 2 reports results from joint estimation of
production and exit cost parameters. I allow for three distinct spillover models across rival
firms, with corresponding estimates in each column.

The learning parameter, v, is negative and precisely estimated across all specifications.
The learning exponent estimates in columns (1) through (3) imply a 1% increase in effective
experience decreases marginal installation costs by 0.21 to 0.36%. The “Spence coefficient,”
which describes the proportional cost reduction from doubling effective experience (Spence,
1981), ranges from 0.134 to 0.223, implying meaningful learning-by-doing in installation-

specific costs. While more modest than manufacturing learning curves, these estimates are

12Qverall, my elasticity estimates are similar in magnitude to those found elsewhere in the literature, which
range from -0.65 (Gillingham and Tsvetanov, 2019) to -6.6 De Groote and Verboven (2019) for analagous
(i.e., static) estimates. Most similar to my preferred estimates is Dorsey (2024), who estimates a mean own
price elasticity for installations of between -2.43 and -2.26.
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Table 2. Estimated Production and Exit Cost Parameters

(1) (2) (3) (4)
Param Est SE Est SE Est SE Est SE

Production Cost Parameters

Learning Exponent ¥ —-0.363 0.150 -0.207 0.176 —-0.243 0.130 —-0.267 0.135
Hardware Cost T —-0.654 0.050 -0.234 0.131 -0471 0.087 -0.579 0.105
Base Cost co 0.643 0.256 0.610 0.207 0.496 0.233 0.576  0.235
Serial Correlation p 0.420 0.007  0.470 0.019 0.436  0.009 0.427 0.015

Effective Experience Parameters
Rival Experience:

In-market oF 0.735  0.253 0.710 0.240 0.653 0.302
Same Manuf. oF 0.382 0.206 0.282 0.185 0.070 0.183
Forgetting Parameter ) 1.048  0.377
Exit Parameter
Mean Scrap Value o 49.698 3.062 48431 2.792 49.745 2.231 52.296 2.354
Market, Firm, Time FE Yes Yes Yes Yes
Spence Coef. (1 —27) 0.223 0.134 0.155 0.169

Notes: FEstimation follows the procedure outlined in Section 4.2. There are 7,351 observations at the
installer-county-half-year level. I normalize experience variables by the industry total experience level in
the first half year of the sample (H1 2008). All effective experience parameters can be interpreted as marginal
experience contributions relative to a firm’s own experience. The “forgetting parameter,” J, describes the
rate of learning depreciation from one period to another. The mean scrap value parameter is measured in
100,000 2013 USD. The “Spence Coefficient” describes the proportional reduction in cost from a doubling
of effective experience. Standard errors are calculated using the Bayesian Bootstrap with bootstrap weights
clustered by county (Rubin, 1981). Bootstrap weights for each county are drawn according to a Dirichlet
distribution with o« = 1 across 200 bootstrap samples.

consistent with a service-intensive process where learning occurs through improved coordi-
nation and permitting efficiency.

I estimate nontrivial serial correlation in firms’ productivity shocks, xjm:. The serial
correlation parameter, p, ranges from 0.42 to 0.47 across columns (1) through (4). Though
moderate, these estimates suggest ignoring serial correlation would bias learning estimates.
Firms with serially correlated positive productivity shocks likely have greater experience
and relatively low marginal costs, which could be misattributed to learning-by-doing if not
properly modeled. All specifications account for serial correlation.

The rival experience parameters describe the marginal contribution of other firms’ cu-
mulative production to a firm’s effective experience. I estimate three parameterizations of
effective experience, each implying a distinct spillover model. Rival experience parameters
represent marginal contributions relative to own experience.

The first parameterization groups all rival experience together. Column (1) reports base-
line estimates: a 1 unit increase in in-market rival experience generates 74% of the learning

benefits from a 1 unit increase in own experience. Learning spillovers from rivals within the
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Figure 4. Estimated Marginal Costs and Learning Contributions

(a) Mean Marginal Costs (b) Cumulative Learning Contributions
Average Marginal Costs ($/W) Cumulative Learning by Source ($/W)
Own Experience
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Notes: Figure 4a compares the average non-hardware costs implied by the dynamic model estimates
reported in column (2) of Table 2 with comparable, publicly-available estimates from the National
Renewable Energy Laboratory, or NREL (Fu et al., 2016). The figure also shows static non-hardware
costs implied by the model. Static non-hardware costs are calculated from the standard, static quantity-
setting first order condition using observed prices and estimated price elasticities. The shaded area shows
the 95% bootstrap confidence interval for the dynamic model estimates. Figure 4b shows the cumulative
contribution of own and rivals’ experience to marginal costs over time using estimates from column (2)
of Table 2. Cumulative experience-based cost reductions are calculated at the 10th, 50th, and 90th
percentiles of observed experience components in each period. Costs are in 2013 dollars per watt.

same geographic market are substantial, though somewhat smaller than individual learning.

To identify spillover mechanisms, I estimate two alternative parameterizations. The first
allows for differential spillovers based on whether firms install modules from the same manu-
facturer, consistent with manufacturer-facilitated learning through training or module design
improvements. Column (2) reports estimates: rivals installing the same manufacturer’s mod-
ules contribute 0.38 versus lower contributions from other manufacturers’ modules, though
the difference is not statistically significant. This provides suggestive but inconclusive evi-
dence for manufacturer-facilitated spillovers.

The second parameterization allows for differential spillovers based on both geographic
market and manufacturer. Column (3) shows in-market rivals contribute more to learning
(0.71) than same-manufacturer rivals (0.28). This is consistent with geographic proximity-
based spillovers driven by worker movement between firms, visibility of rivals’ practices, or

other local diffusion mechanisms.'® This parameterization is also consistent with regulator

13T explore this by estimating the relationship between PV installation-related employment, wages, and
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learning: firms in the same county face similar permitting requirements and utility rebate
processes, so regulatory learning would show up as greater benefits from in-market rivals.'*

While experience parameters describe marginal contributions, the total contribution de-
pends on both parameter estimates and empirical experience distributions. Figure 4 plots
average cumulative contributions to marginal installation costs over the full sample period.
Despite smaller marginal spillover effects relative to own experience, learning spillovers drive
the bulk of estimated cost reductions. The average reduction from own experience is modest,
while spillovers from rivals’ experience (using column 2 estimates) generate more substan-
tial reductions. The distribution of experience levels means even smaller marginal spillover
effects have meaningful aggregate impacts on industry-wide cost reductions.

I estimate a version allowing experience-based cost reductions to depreciate over time.
“Forgetting” models are relevant in boom-bust settings like aircraft, shipbuilding, and oil
extraction (Benkard, 2000; Kellogg, 2011; Levitt et al., 2013; Thompson, 2007). While knowl-
edge depreciation is unlikely to be major in this persistent-growth setting, worker departures
could cause incomplete knowledge retention. I test this with a perpetual-inventory process
where firm j’s experience in market m in period ¢ is Ejmt = 5(Ejmt,1 +f(qmt,1)), where f(-)
is the function that maps lagged quantities into effective experience.!®> The parameter & de-
fines knowledge retention. Column (4) shows minimal forgetting, with a quarterly retention
parameter of 1.05 (not statistically different from 1.0), suggesting knowledge depreciation is
not significant in California’s persistent-growth solar installation industry.

The learning-by-doing magnitude implied by Table 2 estimates aligns with existing esti-
mates of installation-specific costs. Figure 4 compares average non-hardware costs implied
by column (2) estimates with comparable estimates from the National Renewable Energy
Laboratory (NREL). Fu et al. (2016) construct these from installation data, corporate filings,
and engineering studies. I report the sum of their installation labor, permitting, inspection,
and installation costs per watt.'® My model estimates match both the magnitude and rate
of learning implied by Fu et al. (2016)’s estimates within my estimation sample period.

Figure 4 also shows average marginal non-hardware costs assuming firms are completely

installations within a county using data from the Quarterly Census of Employment and Wages. Figure
G4 shows strong, positive relationships between employment/wages and installations, suggesting worker
movement in the PV installation labor pool.

141 explore this using CSI rebate processing times across IOUs. Figure G5 shows suggestive evidence that
TIOU rebate processing times decreased over the sample period, which would reduce installation-specific costs.
Figure G6 shows permitting times also decreased in San Diego County.

15This functional form assumes incomplete retention of prior production knowledge, consistent with for-
getting driven by worker turnover.

16Ty et al. (2016) also include installer overhead and net profit in soft costs. I exclude these as markups
are not components of installation-specific costs and overhead includes fixed operating costs not relevant to
my estimates.
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static in quantity-setting. I calculate these from the static first-order condition using ob-
served prices, hardware costs, and estimated price elasticities. Since I only estimate demand
in-sample, I cannot estimate static costs out-of-sample as I can with the dynamic model using
observed experience levels. While my dynamic model matches Fu et al. (2016)’s estimates,
static estimates are substantially larger than both dynamic estimates and the NREL bench-
mark. This emphasizes the importance of accounting for learning-by-doing and dynamic
incentives: without these, I would overestimate non-hardware costs.

The remaining parameters are precisely estimated and consistent across specifications.
The mean scrap value, 0y, is $4.8-5.2 million. The hardware cost pass-through parameter, 7,
ranges from -0.23 to -0.65, suggesting incomplete pass-through. I normalize experience terms
by total industry experience in H1 2008 for readability and numerical stability. The base cost
parameter, cg, ranges from $0.50 to $0.64 per watt, interpretable as marginal installation

cost when firm effective experience equals industry total experience in H1 2008.

Entry Cost Estimate Table 3 reports mean entry cost estimates using different data-
driven approaches to defining potential entrants in each market. I assume the number of
potential entrants is one or two times the median, mean, or maximum observed entrants per
market over the sample period. This data-driven approach is common, with most studies
using multiples of the maximum observed entrants (Barwick and Pathak, 2015; Barwick et al.,
2025; Seim, 2006). Unsurprisingly, estimated entry costs increase with the pool of potential
entrants, ranging from $18.0 to $44.7 million (in units of $100,000). While large relative
to mean scrap values, these are unconditional mean entry costs. Conditional on entering,
average entry costs range from $5.7 to $6.2 million, somewhat larger than but broadly

consistent with existing estimates and available information on publicly-traded installers.!”

5.3 Robustness

I explore robustness of my main estimates in several ways. First, I test sensitivity to alter-
native quarterly discount factors, f. My main estimates assume a quarterly discount factor
corresponding to an annual discount factor of 0.875, equal to Gerarden (2022)’s for PV man-
ufacturers and similar to De Groote and Verboven (2019)’s for PV-adopting households. I

re-estimate using annual discount factors of 0.9 and 0.8, both found in the literature (Igami,

1"Feldman et al. (2013) estimate upfront costs for developing, constructing, and arranging third-party-
financed residential PV systems, finding fixed business expenses of $600,000/year for a representative firm
in 2012, or roughly $5 million in perpetuity assuming an annual discount factor of 87.5%. SolarCity Corp.
had a market capitalization of $5.6 billion at end of 2013 Q4, having installed roughly 75 MW of residential
capacity that year. Scaling by average annual installed capacity in my data (0.35 MW) yields roughly $2
million valuation for county-level operations of an average firm.
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Table 3. Estimated Entry Cost Parameter

Parameter (1) (2) (3) (4)
Mean Entry Cost Ow 179.770 186.381 185.970 446.580
(5.921) (3.395) (17.926) (35.445)
Potential Entrant Def. 2xmedian(N,,;) 2xmean(N,,;) 1xmax(Ny;) 2xmax(N,)
N 3,179 3,250 3,216 6,432
Ne¢ 260 268 268 536
Wjmt|entry 57.457 57.731 57.715 62.127

Notes: Estimation follows the procedure outlined in Section 4.2. The entry cost parameter is measured
in 100,000 2013 USD. Each column corresponds to a different approach to defining the market-specific,
time-invariant number of potential entrants based on observed quantities of entrants, N,,;: column (1) uses
twice the median of N,,;, column (2) uses twice the mean of N,,;, column (3) uses the maximum observed
value of N,,;, and column (4) uses twice the maximum of N,,;. N is the total number of observations used
in estimation and N°€ is the number of potential entrants per year across all counties based on the assumed
potential entrant definition. @;pn¢|entry is the mean entry cost conditional on a firm choosing to enter.
Bootstrapped standard errors clustered by county using 200 replications are reported in parentheses.

2017; Ryan, 2012). The latter also serves as a proxy for dynamic regulatory environments,
rendering future payoffs less relevant for current decisions, testing my assumption that firms
perceive policy changes as permanent.

Table G3 reports estimates using alternative discount factors alongside baseline estimates.
Results are qualitatively consistent, though implied costs increase with the discount factor.'®
This is consistent with the model: higher discount factors imply higher expected values
from future operations, requiring higher cost estimates to rationalize observed patterns.
Qualitative consistency suggests assuming stationary policy beliefs is reasonable.

Given that I define experience as cumulative production, some estimated learning may
reflect static scale economies. Separately identifying learning-by-doing and scale economies
is challenging in learning curve estimation. I test sensitivity by estimating a version with
a static, contemporaneous firm size measure as a state variable in the value function ap-
proximation. Table G4 compares estimates with and without firm size, finding qualitatively
consistent results. Similar to Benkard (2000), estimated learning rates increase slightly when

including scale.

6 Counterfactual Analysis

Having recovered estimates of the main model parameters, I can simulate market out-

comes under counterfactual policy environments, which requires a method for solving for the

18Mean scrap value and base cost parameters increase with 8 as these are positively related to firm costs.
Effective experience and learning exponent parameters decrease: for given experience levels, lower parameter
values imply higher costs.

27



model’s equilibrium. I begin this section by describing my approach to solving the model
(Section 6.1). T then compare the fit of model-predicted outcomes under the baseline policy
environment with observed data (Section 6.2). I next quantify the importance of learning-
by-doing in determining equilibrium market structure, prices, and quantities (Section 6.3).
Finally, I discuss results from three sets of counterfactual policy scenarios that interact with
learning economies in different ways: consumer subsidies that stimulate demand and thus
learning indirectly (Section 6.4), supply-side entry subsidies that reduce barriers to firm
entry (Section 6.5), and alternative climate policies including a carbon tax (Section 6.6).
Results from these counterfactual simulations provide three main findings. First, learning-
by-doing plays a central role in shaping market outcomes: removing installer learning economies
while maintaining baseline subsidies reduces cumulative installations by 10%, increases equi-
librium prices throughout the sample period, and substantially reduces the number of active
firms. Second, I find that the CSI contributed to growth in the installation industry through
its interaction with learning dynamics: the CSI increases the number of solar PV installa-
tions by 4% and increases the number of operating installers by roughly 9% relative to a
world with no CSI. The CSI’s decreasing rebate structure—which exploits learning-driven
cost reductions—produces higher welfare than alternative rebate designs that do not account
for learning economies. Third, I find that supply-side entry subsidies can more effectively
leverage learning economies than consumer subsidies: replacing the CSI with entry subsi-
dies of varying sizes results in substantially more installations and firm entry by directly

stimulating competition and production, though at significant fiscal cost.

6.1 Counterfactual Solution Method

My approach to solve for the model’s equilibrium builds on Sweeting (2013), adapting para-
metric policy iteration (Benitez-Silva et al., 2000) to allow for value function approximation.
Appendix F provides detailed implementation. Solving the model involves two steps: first,
solving for the new Bellman equation, policy functions, and product market equilibrium in a
period; second, simulating the industry forward one period. I initiate this procedure at the
observed data in the first half-year of 2008 and iterate through the last half-year of 2013.

I implement the first step via a fixed point algorithm that produces conditional exit
probabilities and value function approximating coefficients, from which I calculate condi-
tional entry probabilities. The second step draws from these probabilities to implement
discrete exit and entry decisions, then draws from estimated state transition processes for
the next period’s states.

This process yields a single industry path. Since I take single draws from conditional prob-

abilities and state transitions each period, I repeat this process 60 times for each counterfac-
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Figure 5. Baseline Model Fit
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Notes: This figure shows equilibrium prices, cumulative quantities, exit probabilities, and entry prob-
abilities, comparing model-implied values to observed data at the industry-level from 2008 to 2013.
Model-implied values are averaged across 60 distinct, forward-simulated industry paths with baseline
policies in place. Prices are in 2013 dollars per watt and cumulative quantities are in megawatts.

tual scenario and average outcomes across all runs. The model generates policy-relevant out-
comes including quantities, prices, marginal costs, entry, and exit, allowing me to calculate
firms’ profits and consumer surplus. I calculate changes in environmental damages by com-
bining model-predicted quantities with geographically-differentiated estimates of marginal

environmental benefits from Sexton et al. (2021). See Appendix F for details.

6.2 Model Fit under Baseline Policies

Before turning to counterfactual simulations, I verify the model fits observed data under
baseline policies. Figure 5 shows the model accurately matches prices (declining from $8 to
$5 per watt), cumulative installed capacity, and exit probabilities. Entry is matched well

overall, though slightly under-predicted early and over-predicted late in the sample.
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6.3 The Role of Learning-by-doing

To quantify the importance of learning-by-doing, I simulate industry equilibrium removing
installer learning economies while maintaining baseline subsidies. This isolates the role of
experience-driven cost reductions in determining prices, quantities, and market structure.

Figure 6 shows learning-by-doing plays a substantial role in market outcomes. Without
installer learning, cumulative installed capacity is significantly lower throughout the sample
period. By 2013, the gap between learning and no-learning scenarios is around 48 MW-—
10% of total installed base with learning—indicating experience-driven cost reductions are
critical for market expansion.

The middle panel reveals the mechanism: equilibrium prices are consistently higher with-
out learning-by-doing. While prices decline in both scenarios due to falling hardware costs,
the relative price premium in the no-learning scenario remains high and grows slightly over
time. Though the absolute difference narrows as both prices fall, the percentage difference
increases, indicating learning economies become more important as the industry matures.
This persistent and growing relative price premium dampens demand and limits adoption.
Market structure also differs substantially. The right panel shows the number of active firms
is consistently lower without learning-by-doing, with the gap growing over time. This reflects
two mechanisms. First, without learning economies, returns to production are purely static,
reducing firms’ incentives to enter and expand output. Second, lower overall market size
supports fewer firms in equilibrium.

The welfare implications are large. Total welfare in the no-learning scenario is $49 million
lower than baseline, driven primarily by $287 million in lost consumer surplus, $263 million
in lost product market profits, and $20 million in reduced environmental benefits. These
losses are partly offset by lower subsidy outlays, lower entry costs, and greater scrap values.

These results demonstrate that learning-by-doing generates substantial benefits for con-
sumers and the industry. Cost reductions from accumulated experience enable lower prices
that expand the market while simultaneously supporting entry and growth in active firms.
This highlights the central role learning economies play in the solar installation industry and

motivates analyzing how different policies interact with these learning dynamics.

6.4 Demand Subsidy Counterfactuals

Having established the importance of learning-by-doing, I now examine how consumer sub-
sidies interact with learning dynamics. Consumer subsidies like the CSI stimulate demand
directly, inducing learning-by-doing indirectly through increased production. The CSI’s de-

clining rebate structure may exploit learning-driven cost reductions, making the temporal
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Figure 6. Equilibrium with and without Learning-by-doing

(a) Total Quantities (MW) (b) Prices ($/W) (c) Active Firms

$17.50

5004 L}
== | earning 4 A == | earning == | earning
’ $15.001 A

4004 = = No Learning . = = No Learning 800 4 = = No Learning

$12.50 3
3004

600

2004 $10.004

100 4 $7.504

4001

T T T T T $5.00 4 T T T T T T T T T T
2009 2010 2011 2012 2013 2009 2010 2011 2012 2013 2009 2010 2011 2012 2013

Notes: This figure shows equilibrium cumulative quantities, prices, and total incumbent firms with and
without installer learning-by-doing with baseline subsidy policies in place. The baseline subsidy policies
correspond to those outlined in Section 1.2: full California Solar Initiative (CSI) subsidies, 30% federal
investment tax credit (ITC), and net-metering. Each counterfactual removes the CSI subsidies and
replaces them with the indicated demand subsidy. Model-implied values are averaged across 60 distinct,
forward-simulated industry paths with baseline policies in place. Prices are in 2013 dollars per watt and
cumulative quantities are in megawatts.

structure of subsidies potentially important for welfare.

I simulate industry equilibrium under three demand subsidy counterfactuals: complete
removal of the CSI, a flat rebate equal to the quantity-weighted average CSI rebate, and
an increasing rebate schedule that inverts the baseline CSI’s declining steps. All scenarios
maintain the federal ITC and net metering while varying only the state-level CSI design.

Figure 7 shows removing the CSI substantially reduces market outcomes across all di-
mensions. By 2013, cumulative installed capacity falls by 42 MW (approximately 8%) while
active firms decline by as much as 4% at peak relative to baseline. The middle panel re-
veals the mechanism: equilibrium prices rise throughout the period without CSI subsidies,
dampening demand and limiting industry growth. This price increase reflects both the direct
effect of removing consumer rebates and the indirect effect of reduced learning-by-doing from
lower cumulative production.

The alternative CSI designs yield more nuanced results. The flat rebate produces out-
comes similar to the baseline declining rebate, with only modest differences in quantities,
prices, and market structure, suggesting the temporal structure of rebates matters less than
their overall generosity. The increasing rebate schedule, motivated by Langer and Lemoine
(2022)’s finding that rising subsidies enable optimal price discrimination, performs worse
than both baseline and flat rebate designs. This indicates that with learning-by-doing,
capturing cost reductions through declining subsidies may be more important than price

discrimination benefits.
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Figure 7. Changes from Baseline under Demand Subsidy Counterfactuals
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Notes: This figure shows changes in equilibrium cumulative quantities, prices, and total incumbent
firms relative to the baseline scenario of existing subsidy policies under three alternative demand subsidy
counterfactuals. The baseline subsidy policies correspond to those outlined in Section 1.2: full California
Solar Initiative (CSI) subsidies, 30% federal investment tax credit (ITC), and net-metering. Each
counterfactual removes the CSI subsidies and replaces them with the indicated demand subsidy. Model-
implied values are averaged across 60 distinct, forward-simulated industry paths with baseline policies
in place. Prices are in 2013 dollars per watt and cumulative quantities are in megawatts.

As shown in Table 4, removing the CSI reduces total welfare by $328.7 million relative
to baseline, driven primarily by $220.0 million in lost consumer surplus and $227.4 million
in reduced static profits. The flat rebate design increases welfare by $230.9 million relative
to baseline, suggesting smoothing rebates over time could improve outcomes. However, the
increasing rebate substantially reduces welfare by $1,108.7 million compared to baseline.
These results indicate that while the temporal structure of rebates matters, declining or flat

schedules that exploit learning-by-doing cost reductions outperform increasing schedules.

6.5 Supply Subsidy Counterfactuals

While consumer subsidies leverage learning indirectly through demand stimulation, supply-
side industrial policies can potentially accelerate learning more directly. Entry subsidies
reduce barriers to market participation, stimulating firm entry and intensifying competition.
This increased competition expands production and triggers learning-by-doing that benefits
the entire industry through spillovers. Since learning economies generate dynamic benefits
from cumulative production, policies that directly increase the number of active produc-
ers may be more effective than demand subsidies at exploiting these learning dynamics. I
simulate counterfactual scenarios removing the CSI and replacing it with entry subsidies of
varying sizes: one-quarter, one-half, and three-quarters of the estimated mean conditional
entry cost.

Figure 8 shows entry subsidies substantially alter market outcomes relative to baseline
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Table 4. Estimated Changes in Welfare under Counterfactual Policy Scenarios

Welfare Components ($M)

Scenario ACS AEB  AProfit A —Aw -AG ATotal
Demand Subsidy Counterfactuals:

Remove CSI —220.0 -176 —2274 —199.0 76.3 258.9 —328.7
Flat CSI 119.4 12.1 112.7 138.8 22.1 —174.2 230.9
Increasing CSI 661.9 64.7 609.3 —11.6 —1,554.3 —878.7 —1,108.7
Entry Subsidies:

1/4*Mean Entry Cost -50.7 —-8.2 —106.0 1,965.7 197.4 —2,178.1 —179.9
1/2*Mean Entry Cost 180.0 4.7 51.2 4,519.8 —-372.3 —5,699.3 —1,316.0
3/4*Mean Entry Cost 521.7 23.7 284.7 8,141.4 781.4 —-10,866.6 —1,113.7
Alternative Climate Policies:

Carbon Tax ($30/ton) 15.6 2.9 10.7 269.4 337.5 —43.7 592.4
Remove ITC —958.6 —73.0 —906.9 —84.2 2,004.7 975.2 957.1
10% ITC —664.1 —52.0 —-634.4 —84.6 1,454.8 712.2 732.0
26% ITC —1774 —13.6 —162.3 234.2 127.9 174.9 183.6

Notes: This table reports model-predicted changes in welfare components relative to the baseline scenario
of existing consumer subsidy policies under three sets of counterfactuals: alternative demand subsidy
designs, varying levels of entry subsidies, and alternative climate policies. The baseline subsidy policies
correspond to those outlined in Section 1.2: full CSI subsidies, 30% federal ITC, and net-metering. The
alternative CSI designs, entry subsidies, and carbon tax all remove the full CSI subsidy program. The
three different ITC counterfactuals keep the full CSI subsidy program in-place. Each counterfactual welfare
component reported in the table represents an average across 60 forward-simulated industry paths under
the given counterfactual. ACS is the change in consumer surplus, AEB is the change in environmental
benefits, AProfit is the change in firm flow profits, A¢ is the change in scrap values, and Aw is the
change in entry costs. AG is the change in government expenditures and ATotal is the sum across welfare
components assuming a marginal cost of public funds of 1. All values are reported in million 2013 USD.

CSI policies. The right panel demonstrates entry subsidies dramatically increase active firms,
with effects scaling with subsidy magnitude. By 2013, the largest entry subsidy (three-
quarters of mean entry cost) raises active firms by approximately 62% relative to baseline.
This expanded competition drives the price effects shown in the middle panel: equilibrium
prices fall substantially under entry subsidies as increased firm entry intensifies competition.
The left panel reveals this combination of lower prices and expanded choice sets significantly
boosts cumulative installed capacity, with effects again scaling with subsidy size.

Table 4 reveals a more nuanced welfare picture. While entry subsidies reduce total welfare
relative to baseline CSI by $179.9 million (smallest subsidy) to $1,316.0 million (middle
subsidy), this primarily reflects substantial fiscal costs. Entry subsidies generate significant
benefits through increased consumer surplus ($180.0 million for the middle subsidy) and
reduced scrap values from lower exit ($4,519.8 million for the middle subsidy). However,
these gains are offset by large negative changes in entry costs and government expenditures,

highlighting the fiscal burden of subsidizing firm entry.
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Figure 8. Changes from Baseline under Supply Counterfactuals
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Notes: This figure shows changes in equilibrium cumulative quantities, prices, and total incumbent
firms relative to the baseline scenario of existing subsidy policies under three alternative demand subsidy
counterfactuals. The baseline subsidy policies correspond to those outlined in Section 1.2: full California
Solar Initiative (CSI) subsidies, 30% federal investment tax credit (ITC), and net-metering. Each
counterfactual removes the CSI subsidies and replaces them with the indicated demand subsidy. Model-
implied values are averaged across 60 distinct, forward-simulated industry paths with baseline policies
in place. Prices are in 2013 dollars per watt and cumulative quantities are in megawatts.

The mechanisms through which entry subsidies affect outcomes differ fundamentally from
consumer demand subsidies. Entry subsidies directly reduce entry barriers, stimulating firm
entry and intensifying product market competition. This increased competition reduces
markups and prices, expanding demand and triggering learning-by-doing that further lowers
costs. In contrast, the CSI’s consumer rebates stimulate demand directly, which then in-
duces entry indirectly through higher firm values. While both approaches leverage learning
economies, entry subsidies operate through the supply side whereas consumer subsidies work
through the demand side.

These results suggest that while entry subsidies can effectively expand market size and
competition, their substantial fiscal costs (ranging from approximately $2.1 billion to $8.4
billion in government expenditures) must be weighed against the CSI’s more modest fiscal
burden of $2.2 billion. Moreover, the CSI was funded by California electricity ratepayers
rather than general tax revenue, representing a transfer between households rather than a
true fiscal outlay. The political economy of directly subsidizing firm entry versus consumer
adoption also differs substantially, with entry subsidies potentially facing greater resistance

as perceived industry windfalls.

6.6 Alternative Technology Policies

To provide broader policy context, I examine two additional counterfactuals: a carbon tax

that removes the CSI and instead increases retail electricity prices, and variations in the
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federal investment tax credit (ITC) level while maintaining the CSI.

I simulate a counterfactual carbon tax of $30/ton of CO, emissions, roughly equal to
California’s cap-and-trade allowance prices from 2020-2023. I estimate the tax’s impact on
retail electricity prices using California’s gas-fired generation emissions rates, translating
this into equivalent PV adoption incentives through net-metering benefits (approximately
$0.61/watt). This removes the CSI’s direct rebates but indirectly subsidizes solar by raising
electricity prices.'

Table 4 shows the carbon tax increases total welfare by $592.4 million relative to the CSI
baseline, primarily reflecting reduced government expenditures ($43.7 million savings) and
increased scrap values ($269.4 million) from lower exit rates. However, this comparison is
incomplete because the carbon tax generates substantial benefits beyond the solar industry—
including reduced emissions across all sectors—which my model does not capture. Thus,
while the results suggest carbon pricing can promote solar adoption at levels comparable to
technology-specific subsidies, the broader climate benefits make direct welfare comparisons
inappropriate.

I also examine varying the federal ITC while maintaining the CSI. I simulate ITC rates of
0%, 10%, and 26% (compared to the 30% baseline), relevant given the ITC’s extension to 30%
through 2032 under the Inflation Reduction Act of 2022.%° Table 4 shows eliminating the ITC
increases welfare by $957.1 million, primarily through savings in government expenditures
($975.2 million) that outweigh consumer surplus losses ($958.6 million). The 10% and 26%
ITC rates show similar patterns with smaller magnitudes. These results reflect the ITC’s
high fiscal cost relative to the CSI: removing the federal subsidy saves nearly $1 billion
despite reducing adoption, whereas the CSI costs only $258.9 million. However, this welfare
comparison ignores the broader environmental benefits of increased solar adoption across all

states, making it an incomplete evaluation of the I'TC’s social value.

7 Conclusion

Learning-by-doing and knowledge spillovers fundamentally shape industry equilibrium when
cumulative production experience reduces costs and knowledge transfers across firms. This
paper estimates these learning mechanisms in California’s residential solar PV installation in-
dustry and analyzes how they determine equilibrium outcomes. The results demonstrate that
learning dynamics are central to observed market structure: removing learning economies

reduces installations by 10% and substantially contracts the number of active firms. The

19Gee Appendix F for calculation details. The cap-and-trade program began in 2013; this counterfactual
removes the CSI and implements carbon pricing throughout 2008-2013.
20Prior to the Inflation Reduction Act, the 30% federal ITC had been scaled back to 26% starting in 2020.
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magnitude and spillover structure of learning determine how policies affect equilibrium, with
consumer subsidies leveraging learning to expand adoption and industry size.

The estimates reveal substantial learning-by-doing: a 1% increase in experience reduces
installation costs by 0.21-0.36%. Knowledge spills over substantially across firms, with in-
market rivals’ experience generating 74% of the learning benefit from own experience. These
spillovers amplify industry-wide learning but create a tension: while spillovers magnify cost
reductions from aggregate production, they weaken individual firms’ incentives to expand
output. The equilibrium that emerges reflects this tradeoff, with learning and spillovers
jointly determining prices, quantities, entry, and exit.

Policy effectiveness depends critically on these learning mechanisms. Consumer subsidies
stimulate production, triggering learning that reduces costs for all firms through spillovers.
This creates feedback between learning and market structure: subsidies expand produc-
tion, reducing costs through learning, which facilitates entry and further production. The
magnitude of this effect depends on spillover rates—with large spillovers, subsidies generate
substantial industry expansion; with small spillovers, effects are muted. Supply-side entry
subsidies can more effectively leverage learning by directly stimulating competition and pro-
duction, though at substantial fiscal cost: while entry subsidies dramatically increase active
firms (by up to 62%) and installations, they reduce total welfare by $180 million to $1.3
billion relative to consumer subsidies, primarily reflecting fiscal costs of $2.1 billion to $8.4
billion compared to $2.2 billion for the CSI.

These findings contribute to understanding how learning mechanisms affect industries
with experience-driven cost reductions and inform policy design in settings where produc-
tion generates learning externalities. The results emphasize that accounting for learning
dynamics—both magnitude and spillover structure—is necessary for predicting how policies

affect equilibrium outcomes in industries characterized by substantial learning economies.

References

Aguirregabiria, Victor, Allan Collard-Wexler, and Stephen P. Ryan. 2021. “Dy-
namic games in empirical industrial organization.” In Handbook of Industrial Organization.
Vol. 4 of Handbook of Industrial Organization, Volume /, , ed. Kate Ho, Ali Hortagsu and
Alessandro Lizzeri, 225-343. Elsevier.

Aguirregabiria, Victor, and Pedro Mira. 2007. “Sequential Estimation of Dynamic
Discrete Games.” Econometrica, 75(1): 1-53.

Arrow, Kenneth J. 1962. “The Economic Implications of Learning by Doing.” The Review
of Economic Studies, 29(3): 155-173.

36



Bajari, Patrick, C. Lanier Benkard, and Jonathan Levin. 2007. “Estimating Dynamic
Models of Imperfect Competition.” Econometrica, 75(5): 1331-1370.

Barbose, Galen, Naim Darghouth, Eric O’Shaughnessy, and Sydney Forrester.
2022. “Tracking the Sun: Pricing and Design Trends for Distributed Photovoltaic Systems
in the United States, 2022 Edition.” Lawrence Berkeley National Laboratory.

Barwick, Panle Jia, and Parag A. Pathak. 2015. “The costs of free entry: an empir-
ical study of real estate agents in Greater Boston.” The RAND Journal of Economics,
46(1): 103-145.

Barwick, Panle Jia, Myrto Kalouptsidi, and Nahim Bin Zahur. 2025. “Industrial
Policy Implementation: Empirical Evidence from China’s Shipbuilding Industry.” The
Review of Economic Studies, 92(6): 3611-3648.

Benitez-Silva, Hugo, John Rust, Gunter Hitsch, Giorgio Pauletto, and George
Hall. 2000. “A Comparison Of Discrete And Parametric Methods For Continuous-State
Dynamic Programming Problems.” Computing in Economics and Finance 2000.

Benkard, C. Lanier. 2000. “Learning and Forgetting: The Dynamics of Aircraft Produc-
tion.” American Economic Review, 90(4): 1034-1054.

Benkard, C. Lanier. 2004. “A Dynamic Analysis of the Market for Wide-Bodied Com-
mercial Aircraft.” The Review of Economic Studies, 71(3): 581-611.

Benkard, C. Lanier, Przemyslaw Jeziorski, and Gabriel Y. Weintraub. 2015.
“Oblivious equilibrium for concentrated industries.” The RAND Journal of Economics,
46(4): 671-708.

Berry, Steve, and Ariel Pakes. 2000. “Estimation from the Optimality Conditions for
Dynamic Controls.” Working Paper.

Berry, Steven, James Levinsohn, and Ariel Pakes. 1995. “Automobile Prices in Market
Equilibrium.” Econometrica, 63(4): 841-890.

Berry, Steven, James Levinsohn, and Ariel Pakes. 1999. “Voluntary Export Restraints
on Automobiles: Evaluating a Trade Policy.” American Economic Review, 89(3): 400-430.

Berry, Steven T. 1994. “Estimating Discrete-Choice Models of Product Differentiation.”
The RAND Journal of Economics, 25(2): 242-262.

Berry, Steven T., and Philip A. Haile. 2014. “Identification in Differentiated Products
Markets Using Market Level Data.” Econometrica, 82(5): 1749-1797.

Besanko, David, Ulrich Doraszelski, Yaroslav Kryukov, and Mark Satterthwaite.
2010. “Learning-by-Doing, Organizational Forgetting, and Industry Dynamics.” FEcono-
metrica, 78(2): 453-508.

37



Bloom, Nick, Rachel Griffith, and John Van Reenen. 2002. “Do R&D tax credits
work? Evidence from a panel of countries 1979-1997.” Journal of Public Economics,
85(1): 1-31.

Bollinger, Bryan, and Kenneth Gillingham. 2019. “Learning-by-Doing in Solar Pho-
tovoltaic Installations.” Working Paper.

Borenstein, Severin. 2017. “Private Net Benefits of Residential Solar PV: The Role of
Electricity Tariffs, Tax Incentives, and Rebates.” Journal of the Association of Environ-
mental and Resource Economists, 4(S1): S85-S122.

Brenkers, Randy, and Frank Verboven. 2006. “Liberalizing a Distribution System: The
European Car Market.” Journal of the European Economic Association, 4(1): 216-251.

Cabral, Luis M. B., and Michael H. Riordan. 1994. “The Learning Curve, Market
Dominance, and Predatory Pricing.” Econometrica, 62(5): 1115-1140.

California State Senate. 2006. “S.B. 1 - Electricity: solar energy: net metering.” 2005-
2006 Legislative Session.

Collard-Wexler, Allan. 2013. “Demand Fluctuations in the Ready-Mix Concrete Indus-
try.” Econometrica, 81(3): 1003-1037.

Conlon, Christopher, and Jeff Gortmaker. 2020. “Best practices for differentiated prod-
ucts demand estimation with PyBLP.” The RAND Journal of Economics, 51(4): 1108~
1161.

Covert, Thomas R. 2015. “Experiential and Social Learning in Firms: The Case of Hy-
draulic Fracturing in the Bakken Shale.” Working Paper.

Covert, Thomas R., and Richard L. Sweeney. 2022. “Winds of Change: Estimating
Learning by Doing without Cost or Input Data.” Working Paper.

De Groote, Olivier, and Frank Verboven. 2019. “Subsidies and Time Discounting
in New Technology Adoption: Evidence from Solar Photovoltaic Systems.” American
Economic Review, 109(6): 2137-2172.

Doraszelski, Ulrich, and Mark Satterthwaite. 2010. “Computable Markov-perfect in-
dustry dynamics.” The RAND Journal of Economics, 41(2): 215-243.

Dorsey, Jackson. 2024. “Solar Market Frictions: The Role of Platforms and Policies.” The
Review of Economics and Statistics, 1-45.

Ericson, Richard, and Ariel Pakes. 1995. “Markov-Perfect Industry Dynamics: A
Framework for Empirical Work.” The Review of Economic Studies, 62(1): 53-82.

Feldman, David, David Friedman, and Robert Margolis. 2013. “Financing, Over-
head, and Profit: An In-Depth Discussion of Costs Associated with Third-Party Financing

of Residential and Commercial Photovoltaic Systems.” National Renewable Energy Lab-
oratory, U.S. Department of Energy NREL/TP-6A20-60401, Golden, CO.

38



Fowlie, Meredith, Mar Reguant, and Stephen P. Ryan. 2016. “Market-Based Emis-
sions Regulation and Industry Dynamics.” Journal of Political Economy, 124(1): 249-302.

Fudenberg, Drew, and Jean Tirole. 1983. “Learning-by-Doing and Market Perfor-
mance.” The Bell Journal of Economics, 14(2): 522-530.

Fu, Ran, Donald Chung, Travis Lowder, David Feldman, Kristen Ardani, and
Robert Margolis. 2016. “U.S. Solar Photovoltaic System Cost Benchmark: Q1 2016.”
National Renewable Energy Laboratory, U.S. Department of Energy NREL/TP-6A20-
66532, Golden, CO.

Gerarden, Todd D. 2022. “Demanding Innovation: The Impact of Consumer Subsidies on
Solar Panel Production Costs.” Management Science, Forthcoming.

Ghemawat, Pankaj, and A. Michael Spence. 1985. “Learning Curve Spillovers and
Market Performance.” The Quarterly Journal of Economics, 100: 839-852.

Gillingham, Kenneth, and Tsvetan Tsvetanov. 2019. “Hurdles and steps: Estimating
demand for solar photovoltaics.” Quantitative Economics, 10(1): 275-310.

Gowrisankaran, Gautam, and Marc Rysman. 2012. “Dynamics of Consumer Demand
for New Durable Goods.” Journal of Political Economy, 120(6): 1173-1219.

Grigolon, Laura, and Frank Verboven. 2014. “Nested Logit or Random Coefficients
Logit? A Comparison of Alternative Discrete Choice Models of Product Differentiation.”
The Review of Economics and Statistics, 96(5): 916-935.

Hall, Bronwyn, and John Van Reenen. 2000. “How effective are fiscal incentives for
R&D? A review of the evidence.” Research Policy, 29(4): 449-469.

Hotz, V. Joseph, and Robert A. Miller. 1993. “Conditional Choice Probabilities and
the Estimation of Dynamic Models.” The Review of Economic Studies, 60(3): 497-529.

Hughes, Jonathan E., and Molly Podolefsky. 2015. “Getting Green with Solar Subsi-
dies: Evidence from the California Solar Initiative.” Journal of the Association of Envi-
ronmental and Resource Economists, 2(2): 235-275.

Ifrach, Bar, and Gabriel Y. Weintraub. 2017. “A Framework for Dynamic Oligopoly
in Concentrated Industries.” The Review of Economic Studies, 84(3): 1106-1150.

Igami, Mitsuru. 2017. “Estimating the Innovator’s Dilemma: Structural Analysis of Cre-
ative Destruction in the Hard Disk Drive Industry, 1981-1998.” Journal of Political Econ-
omy, 125(3): 798-847.

Interstate Renewable Energy Council. 2023. “National Solar Jobs Census 2022.” In-
terstate Renewable Energy Council.

TRENA. 2022. “Renewable Power Generation Costs in 2021.” International Renewable En-
ergy Agency, Abu Dhabi.

39



IRENA. 2023. “Renewable Capacity Statistics 2023.” International Renewable Energy
Agency, Abu Dhabi.

Irwin, Douglas A., and Peter J. Klenow. 1994. “Learning-by-Doing Spillovers in the
Semiconductor Industry.” Journal of Political Economy, 102(6): 1200-1227.

Jeon, Jihye. 2022. “Learning and investment under demand uncertainty in container ship-
ping.” The RAND Journal of Economics, 53(1): 226-259.

Juhasz, Réka, Nathan J. Lane, and Dani Rodrik. 2023. “The New Economics of
Industrial Policy.”

Kalouptsidi, Myrto. 2018. “Detection and Impact of Industrial Subsidies: The Case of
Chinese Shipbuilding.” The Review of Economic Studies, 85(2): 1111-1158.

Kellogg, Ryan. 2011. “Learning by Drilling: Interfirm Learning and Relationship Persis-
tence in the Texas Oilpatch.” The Quarterly Journal of Economics, 126(4): 1961-2004.

Langer, Ashley, and Derek Lemoine. 2022. “Designing Dynamic Subsidies to Spur
Adoption of New Technologies.” Journal of the Association of Environmental and Resource
Economists, 9(6): 1197-1234.

Levitt, Steven D., John A. List, and Chad Syverson. 2013. “Toward an Understanding
of Learning by Doing: Evidence from an Automobile Assembly Plant.” Journal of Political
Economy, 121(4): 643-681.

McFadden, Daniel. 1977. “Modelling the Choice of Residential Location.” Cowles Foun-
dation for Research in Economics, Yale University Cowles Foundation Discussion Paper
477.

Miller, Nathan H., and Matthew C. Weinberg. 2017. “Understanding the Price Effects
of the MillerCoors Joint Venture.” Econometrica, 85(6): 1763-1791.

Nemet, Gregory F. 2009. “Demand-pull, technology-push, and government-led incentives
for non-incremental technical change.” Research Policy, 38(5): 700-709.

Nemet, Gregory F. 2019. How Solar Energy Became Cheap: A Model for Low-carbon
Innovation. New York, NY:Routledge.

Nemet, Gregory F., Eric O’Shaughnessy, Ryan Wiser, Naim Darghouth, Galen
Barbose, Ken Gillingham, and Varun Rai. 2017. “Characteristics of low-priced solar
PV systems in the U.S.” Applied Energy, 187: 501-513.

Olley, G. Steven, and Ariel Pakes. 1996. “The Dynamics of Productivity in the Telecom-
munications Equipment Industry.” Econometrica, 64(6): 1263-1297.

Pakes, Ariel, Michael Ostrovsky, and Steven Berry. 2007. “Simple estimators for the
parameters of discrete dynamic games (with entry/exit examples).” The RAND Journal
of Economics, 38(2): 373-399.

40



Pless, Jacquelyn, and Arthur A. Van Benthem. 2019. “Pass-Through as a Test for
Market Power: An Application to Solar Subsidies.” American Economic Journal: Applied
Economics, 11(4): 367-401.

Rubin, Donald B. 1981. “The Bayesian Bootstrap.” The Annals of Statistics, 9(1): 130
134. Publisher: Institute of Mathematical Statistics.

Ryan, Stephen P. 2012. “The Costs of Environmental Regulation in a Concentrated In-
dustry.” Econometrica, 80(3): 1019-1061.

Seim, Katja. 2006. “An Empirical Model of Firm Entry with Endogenous Product-Type
Choices.” The RAND Journal of Economics, 37(3): 619-640.

Sexton, Steven, A. Justin Kirkpatrick, Robert I. Harris, and Nicholas Z. Muller.
2021. “Heterogeneous Solar Capacity Benefits, Appropriability, and the Costs of Sub-
optimal Siting.” Journal of the Association of Environmental and Resource Economists,

8(6): 1209-1244.

Spence, A. Michael. 1981. “The Learning Curve and Competition.” The Bell Journal of
Economics, 12(1): 49-70.

Sweeting, Andrew. 2013. “Dynamic Product Positioning in Differentiated Product Mar-
kets: The Effect of Fees for Musical Performance Rights on the Commercial Radio Indus-
try.” Econometrica, 81(5): 1763-1803.

Thompson, Peter. 2001. “How Much Did the Liberty Shipbuilders Learn? New Evidence
for an Old Case Study.” Journal of Political Economy, 109(1): 103-137.

Thompson, Peter. 2007. “How Much Did the Liberty Shipbuilders Forget?” Management
Science, 53(6): 908-918.

Thornton, Rebecca Achee, and Peter Thompson. 2001. “Learning from Experience
and Learning from Others: An Exploration of Learning and Spillovers in Wartime Ship-
building.” American Economic Review, 91(5): 1350-1368.

van Benthem, Arthur, Kenneth Gillingham, and James Sweeney. 2008. “Learning-
by-Doing and the Optimal Solar Policy in California.” The Energy Journal, 29(3): 131-151.

Vreugdenhil, Nicholas. 2023. “Booms, Busts, and Mismatch in Capital Markets: Evidence
from the Offshore Oil and Gas Industry.” Working Paper.

Weintraub, Gabriel Y., C. Lanier Benkard, and Benjamin Van Roy. 2008. “Markov
Perfect Industry Dynamics With Many Firms.” Econometrica, 76(6): 1375-1411.

Wollmann, Thomas G. 2018. “Trucks without Bailouts: Equilibrium Product Character-
istics for Commercial Vehicles.” American Economic Review, 108(6): 1364-1406.

41



Online Appendix for “Learning-by-Doing, Spillovers, and Market
Structure in the U.S. Residential Solar Industry”

Jacob T. Bradt

The following appendices are for online publication only:
—Appendix Section A: Data Appendix
—Appendix Section B: A Dynamic Model of Demand for Solar Installations
—Appendix Section C: Estimating the Exit Policy Function
—Appendix Section D: Identification: Predicted Experience Instruments
—Appendix Section E: Value Function Approximation
—Appendix Section F: Counterfactual Solution Method
—Appendix Section G: Supplemental Figures and Tables

A Data Appendix

A.1 Data Sources

My primary data source is Lawrence Berkeley National Laboratory’s “Tracking the Sun”
database, which compiles system-level data on PV installations from state agencies and
utilities administering incentive programs, renewable energy credit registration, or grid
interconnection (Barbose et al., 2022). The database includes installation date, system
size, installed price, rebates, customer type, zip code, mounting type, installer name, and
technical hardware details including module efficiency, make, and manufacturer. LBNL
processes source data by removing missing entries, standardizing names, and integrating
equipment specifications. The database covers 2.5+ million systems from 2000 to 2021,
representing approximately 77% of the US market. These data are available at https:
//emp.1lbl.gov/tracking-the-sun.

I obtained system-level hardware cost data for California residential PV systems from the
California Public Utilities Commission (CPUC). Though not uniformly required, installers
voluntarily provided hardware costs for many systems applying for CSI rebates, particularly
during 2008-2013. T acquired data for over 60,000 systems from CPUC via LBNL contacts
and successfully matched these to over 79% of processed LBNL installations during this pe-
riod using unique identifiers. These hardware cost data are critical for separating installation
costs from hardware costs. Data are available upon request at jbradt@g.harvard.edu.

I also use the CPUC CSI Working Dataset, which contains complete CSI rebate ap-
plications from California’s three main investor-owned utilities, including non-accepted ap-
plications. This dataset contains detailed rebate eligibility information that I use to de-
termine precise dates of CSI rebate changes for each IOU. These data are available at
https://www.californiadgstats.ca.gov/downloads/.

To estimate potential market size for residential solar adoption, I combine data from
Google Project Sunroof with Census housing counts. Project Sunroof estimates the share
of buildings per county where solar adoption yields positive net present value by combining
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satellite imagery, 3D modeling, property-level shade calculations, NREL weather data, Clean
Power Research electricity rates, and Aurora Solar cost data. Property-level variation in
returns from shading and roof orientation makes this approach preferable to assuming all
households are potential adopters. Data are available at https://sunroof.withgoogle.
com/.

I use solar irradiance data from the World Bank Global Solar Atlas, which provides long-
term annual average PV power potential of 1 kW systems at 250-meter resolution. I combine
these data with Census county boundaries to estimate average annual production potential
per county. I use these estimates to calculate consumption and net energy metering benefits
(Section A.4) and to quantify counterfactual power output changes for avoided climate and
air pollution damages. Data are available at https://globalsolaratlas.info/download.

I obtain household demographic data from the Census American Community Survey
(ACS) Public Use Microdata Sample (PUMS) for California 2008-2013. The PUMS pro-
vides a 1-in-100 national sample identifying location to public use microdata area (100,000+
persons) or county when population exceeds 100,000. I draw 200 households per county-
period to model income-based preference heterogeneity in demand. For small counties not
identified in PUMS, I draw from the statewide sample. Since PUMS data are only available
at an annual level, I draw from the same annual sample for each county-period within the
same calendar year. Data are available at https://www.census.gov/programs-surveys/
acs/microdata.html.

I use Census ACS 5-year Estimates to obtain annual owner-occupied housing units per
county for 2009-2013, which I combine with Project Sunroof data to calculate potential PV
adopter market size and firm market shares. For 2008, which is unavailable in the ACS 5-
year estimates, I impute housing counts using the 2000 Decennial Census and 2009-2013 ACS
estimates. Data are available at https://www.census.gov/data/developers/data-sets/
acs—byear.html.

I obtain electricity rate data from the Energy Information Administration’s Form 861,
which provides annual data on US electric utilities. Following Borenstein and Bushnell
(2022), I use total retail revenues and kilowatt-hour sales for residential customers to calculate
IOU-specific average retail electricity rates for California’s three main IOUs for 2008-2013. I
use these rates to calculate consumption and NEM benefits (Section A.4). Data are available
at https://www.eia.gov/electricity/data/eia861/.

Finally, I use wage data from the Bureau of Labor Statistics Quarterly Census of Employ-
ment and Wages (QCEW) to construct demand instruments. The QCEW provides quarterly
average wages for private sector electricians and roofers by California county for 2008-2013.
I construct county-level weighted averages using county employment levels and use these as
demand instruments. Data are available at https://www.bls.gov/cew/.

A.2 Detailed Policy Descriptions

This section provides comprehensive details on the three main policy instruments subsidizing
residential solar PV adoption in California during the 2008-2013 period: the California Solar
Initiative (CSI), the federal Investment Tax Credit (ITC), and Net Energy Metering (NEM).

A-2


https://sunroof.withgoogle.com/
https://sunroof.withgoogle.com/
https://globalsolaratlas.info/download
https://www.census.gov/programs-surveys/acs/microdata.html
https://www.census.gov/programs-surveys/acs/microdata.html
https://www.census.gov/data/developers/data-sets/acs-5year.html
https://www.census.gov/data/developers/data-sets/acs-5year.html
https://www.eia.gov/electricity/data/eia861/
https://www.bls.gov/cew/

Figure A1l. Spatial and Temporal Variation in CSI Rebates across IOUs
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Notes: This figure shows spatial and temporal variation in CSI rebates. Variation is driven by the
spatial distribution of the three main IOUs (left panel) and cumulative installed capacity in each IOU
service territory. Since CSI rebate levels are a function of cumulative installed capacity (see Appendix
Figure G2), this drives variation in rebate levels over time across IOUs (right panel). County boundaries
shown in grey. Sources: California Public Utilities Commission and US Census Bureau.

California Solar Initiative (CSI) The CSI was California’s largest direct rebate program
for solar PV, authorized by Senate Bill 1 in 2006 with a $2.2 billion budget. The program
ran from 2007 to 2013, providing upfront cash rebates to customers of California’s three
main investor-owned utilities (IOUs): Pacific Gas & Electric (PG&E), Southern California
Edison (SCE), and San Diego Gas & Electric (SDG&E).

The CSI rebate schedule was designed explicitly with learning-by-doing in mind. Re-
bates started at $2.50 per watt and stepped down over 10 rate levels based on cumulative
installed capacity in each IOU service area. This declining structure assumed that industry
experience would reduce installation costs over time, thereby reducing the rebates needed
to incentivize adoption. Each IOU progressed through the rebate schedule independently
based on cumulative capacity in its service territory, creating spatial and temporal variation
in rebate levels that provides plausibly-exogenous variation in net-of-rebate prices useful for
estimation.

The CSI was funded through electricity ratepayer transfers rather than general tax rev-
enue. Each IOU collected funds from its ratepayers to finance rebates for systems installed
within its service territory. This funding mechanism means the CSI represents a transfer be-
tween California households rather than a true fiscal outlay from government coffers, though
it still imposed costs on ratepayers.

The CSI had explicit industrial policy goals beyond emissions reductions. The authorizing
legislation stated the program aimed to “establish a self-sufficient solar industry” (California
State Senate, 2006), making evaluation of the program’s effect on market structure central
to assessing its success.
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Federal Investment Tax Credit (ITC) The federal ITC provides a tax credit equal to
a percentage of installed system costs for solar PV systems. The Energy Policy Act of 2005
established a 30% tax credit for residential solar systems, which became effective in 2006.
Initially, the credit was capped at $2,000 per system. The Emergency Economic Stabilization
Act of 2008 removed this cap starting in 2009, substantially increasing the subsidy for typical
residential systems.

The ITC is applied to the net-of-rebate installed cost. For a system with gross installed
price p and upfront rebate r, the ITC provides a credit of 0.3 X (p — r). This means the
ITC and CSI rebates interact: higher CSI rebates reduce the base to which the I'TC applies,
creating a marginal subsidy rate of 0.3 + 0.7 x C'ST rather than 0.3 + CS1.

The ITC has been extended and modified several times. It was scheduled to step down to
26% in 2020 and 22% in 2021 before expiring for residential systems in 2022. However, the
Inflation Reduction Act of 2022 extended the 30% credit through 2032. During my sample
period (2008-2013), the credit remained at 30% throughout, with the only major change
being the removal of the $2,000 cap in 2009.

California also offered a state-level solar tax credit from 2001-2005, but this had expired
before my sample period begins.

Net Energy Metering (NEM) Net energy metering requires utilities to credit solar PV
owners for excess electricity generation at the retail electricity rate. Under California’s NEM
program, households with solar systems can offset their electricity consumption with their
own generation. When generation exceeds consumption, the excess is fed back to the grid
and credited at the retail rate, which is substantially higher than the wholesale rate utilities
would otherwise pay for electricity.

California’s retail electricity rates feature increasing-block pricing, where the marginal
price per kilowatt-hour increases with total consumption. Households consuming above cer-
tain thresholds face higher rates for marginal consumption. This pricing structure interacts
with solar PV adoption in important ways: households in higher consumption tiers receive
greater per-kilowatt-hour savings from solar generation, making adoption more attractive for
high-consumption households. Additionally, excess generation is credited at the household’s
marginal retail rate, which depends on their consumption tier.

The value of NEM benefits depends on several factors: the household’s retail electricity
rate (which varies by IOU and consumption level), the system’s annual electricity genera-
tion (which depends on solar irradiance and system size), and the household’s consumption
patterns. I calculate NEM benefits using estimates of excess PV output from Darghouth
et al. (2011), county-level solar irradiance data from the World Bank Global Solar Atlas, and
[OU-specific average retail rates from EIA Form 861 data. I assume a 25-year system lifespan
and discount future electricity bill savings at an annual rate of 12.5% following De Groote
and Verboven (2019).

The NEM program has evolved over time. The original NEM 1.0 rules that applied during
my sample period were modified in 2016 (NEM 2.0) and again in 2022 (NEM 3.0), with later
versions reducing the credit rates for excess generation. During 2008-2013, however, the
basic NEM 1.0 structure remained constant.

Together, these three policy instruments provided substantial subsidies for residential
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solar adoption in California. The combination of upfront CSI rebates, federal tax credits,
and ongoing NEM benefits reduced the effective price of solar systems by 50-70% in many
cases, driving rapid adoption growth during this period.

A.3 Sample Restrictions

I restrict LBNL Tracking the Sun data to California residential rooftop systems under 20 kW
with observed price and rebate data. Excluded: non-residential systems, ground-mounted
systems, systems over 20 kW (likely multi-family condominiums), self-installed systems,
third-party-owned systems, and price-per-watt outliers (below 1st or above 99th percentile).

A.4 Constructing Data for Demand Estimation

I aggregate system-level data to firm-county-period level, subsetting to installations with
observed hardware costs. Normalize prices and rebates by installed capacity to aggregate
comparable goods, abstracting from scale economies (reasonable given commoditized PV
module technology).

Market Shares: Combine Project Sunroof data (share of buildings with positive NPV
from solar) with Census owner-occupied housing counts to estimate potential adopter pool,
avoiding principal-agent problems in renter-occupied housing. Account for PV durability
by removing prior adopters (using full 2000-2021 LBNL history) from potential market size
each period.

Prices and Rebates: Calculate weighted county-period-firm averages, weighting each
installation by its share of the firm’s total installed capacity within that county-period.

Investment Tax Credit (ITC): Assuming full capitalization, ITC benefit per watt is:

min {1000/ qjme, 0.3(Dijme — rijme) } if £ < 2009 H1
03(pz]mt - Tijmt) ift Z 2009 H1
where p;jm: is installed price, 7;;m: is upfront rebate per watt, and g¢;j,,; is system capacity.

Net Energy Metering (NEM): Calculate NPV of NEM benefits using Darghouth et al.
(2011)’s excess PV output estimates, World Bank Global Solar Atlas power potential data
(Figure A2), and EIA Form 861 retail electricity rates (Figure A2). Assumptions: 25-year
system lifespan, 12.5% annual household discount rate (De Groote and Verboven, 2019).
Aggregate ITC and NEM with CSI rebates as total public incentives per watt.

All dollar values converted to 2013 real dollars using CPI.2! Firm attributes include count
of distinct module types and indicator for above-75th-percentile module efficiency.

21US Bureau of Labor Statistics, Consumer Price Index for All Urban Consumers: All Items in U.S. City
Average [CPTAUCSLY, retrieved from FRED, Federal Reserve Bank of St. Louis.
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Figure A2. Spatial Variation in PV Power Potential and Retail Electricity Rates
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Notes: These maps show spatial variation in the long-term annual average photovoltaic (PV) power
potential of a 1 kW capacity PV system from the World Bank Group’s Global Solar Atlas (left) and
average retail electricity rates by county based on data from the Energy Information Administration’s

Form 861 (right).

A.5 Constructing Data for Supply Model

Supply data start from the same installer-county-period dataset used for demand estimation,
with added fields for average hardware cost per watt and experience/quantity variables.
Hardware cost is calculated as a firm-county-period weighted average and deflated using the

CPL

I compute experience variables using the full LBNL history (2000-2021), defining experi-
ence as cumulative PV system capacity installed (watts). For each installer-county-period, I
calculate cumulative installed capacity plus rival experience measures: cumulative capacity
for rivals in the same county, other counties, same module manufacturer, and other man-
ufacturers. All experience fields are normalized by statewide cumulative installed watts as
of H1 2008 to ensure numerical stability, as own and rival experience can differ by orders
of magnitude. I also calculate corresponding period-specific quantities in both absolute and

normalized watts for use in estimation.



Table A1l. Summary Statistics for Processed Installer-level Data

Mean SD Min Max

Number of Installations 9.18 30.92 1.00 1560.00
Total Installed Capacity (kW) 48.53 164.46  1.23  8129.72
Market Share 0.01 0.01 0.00 0.26
Market Share: Inside 3.86 6.62 0.01 83.00
Average Installed Price (2013 $/W) 6.49 1.59 1.25 10.90
Average Hardware Cose (2013 $/W) 4.12 1.47 0.92 10.34
Own Experience: In-market (kW) 213.40  522.51  0.00 15045.89
Own Experience: Out-of-market (kW) 2899.14 7682.26  0.00 78300.92
Rival Experience: In-market (MW) 16.04 17.20 0.29 85.68
Rival Experience: Out-of-market (MW) 323.60 164.15 81.30  665.95
Rival Experience: Same Manufacturer (MW) 30.96 36.34 0.00 144.37
Rival Experience: Other Manufacturer (MW) 308.69  160.58 71.82  668.80
N 10,247

Notes: This table presents summary statistics for the processed installer-level dataset that
I use in my empirical analysis. The unit of observation is at the installer-county-period-level
(half-yearly), so descriptive statistics pool observations across markets and periods. Total
installed capacity in a period and the measures of firms’ own experience are in kilowatts
(kW), whereas rivals’ experience measures are in megawatts (MW), or 1000 kW.

B A Dynamic Model of Demand for Solar Installations

A large literature uses static discrete choice models to estimate demand for durable goods,
including vehicles (Berry et al., 1995, 1999) and commercial airplanes (Benkard, 2004). How-
ever, several papers implement dynamic discrete choice models of demand for solar PV, find-
ing that static models can deliver biased demand estimates (Bollinger and Gillingham, 2019;
De Groote and Verboven, 2019; Feger et al., 2022; Langer and Lemoine, 2022).

While there is evidence to suggest that consumers are forward-looking in this setting,
I assume that a static demand model provides a reasonable approximation to consumer
behavior. This simplifying assumption buys substantial computational gains, eliminating
the need to jointly solve dynamic supply and demand in counterfactual analysis. Given
my emphasis on the supply-side impacts of solar incentives, the use of a static model as a
reduced form for demand is likely reasonable; however, it is worth assessing the extent to
which this introduces bias in my estimates.

To do so, I develop and estimate a dynamic discrete choice model of solar adoption based
on De Groote and Verboven (2019) and Bollinger and Gillingham (2019). For the purposes
of this exercise, I omit individual-level heterogeneity in preferences (i.e., remove random
coefficients) and omit observable, time- and firm-specific attributes.

B.1 Model Setup

Similar to the static model in Section 3.1, incumbent firms in each period and market face a
set of idiosyncratic consumers, i € {1,..., N}, who demand solar PV installation services.
Each consumer observes a market- and time-specific state, s,,;, and either purchases a solar
PV installation from one of the observed incumbents (j € {1,..., Jy:}) or chooses to not
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install solar PV in this period (7 = 0). The market and time specific state is the union of
active incumbents’ prices; available rebates, including the present discounted value of the
future stream of net metering rents; and qualities:

UjeTme [pjmt Timt fjmt}

Consumers are also differentiated by an idiosyncratic random utility shock that is alterna-
tive specific, &;j,,:. The conditional indirect utility that consumer ¢ receives from choosing
installer j in market m in period ¢ is:

Wismt(Smt) = &(Djmt — Tjme) + Ejme + gj + gﬁ +Eijmt (B1)

=0jmt

where pj,,; is the retail price per watt of system capacity; 7, is a market-time-varying rebate
or subsidy per watt of system capacity; & is a firm’s market-time-specific unobserved
quality; éj allows the mean valuation of unobserved product characteristics to vary freely by
product; and & allows the mean valuation of the indirect utility from installation to vary
freely over time. As in the main text, I normalize prices and rebates by system capacity to
ensure consistency when aggregating these variables across systems of different sizes.

Consumers that do not adopt solar in market m in period ¢ receive a flow utility g,
and experience the option value of adopting in the future:

Wiomt (Smt) = Uome + BENV (Smet1|Smt) | +Eiome (B2)

N /
-~

Eé\O’mt

where [ is a common, quarterly discount factor.

As with the static demand model in the main text, I decompose the idiosyncratic pref-
erence shock using the distributional assumptions of the nested logit model following Berry
(1994). For each market and in each period, define two groups, g € {0,1}, where g = 1
includes the full set of incumbent installers and g = 0 the no-installation option. Then

gijmt = gigmt + (1 - n)gijmt

where €;;,,,; is independent and identically distributed (i.i.d.) Type 1 Extreme Value, g
has the unique distribution such that &;;,,,; is i.i.d. Type 1 Extreme Value, and 0 <n <1 is
a nesting parameter that proxies for the degree of preference correlation within a group.

This assumption on the structure of the idiosyncratic preference shocks results in pre-
dicted market shares that follow the usual nested logit closed form, which I include in Section
3.1. Following Berry (1994), it is possible to invert predicted market shares as follows:

log (msjmt(smt)) - IOg (mSOmt(Smt)> = Ojmt — 5Omt + T]lOg (msjmﬂg(smt)) (BB)

where msj,,; is firm j’s predicted share of market m in period ¢; msg,: is the predicted
outside share in market m in period ¢; and 15,4 is firm j’s conditional within-group share
in market m in period ¢ (i.e., the firm’s inside share).
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B.2 Ex Ante Value Function

Taking (B3) to the data requires a closed form for households’ ex ante value function. This
requires an approach to handling the expectation operator in (B2), which integrates over
uncertainty about the next period state variables. One standard approach (applied in the
dynamic supply model in the text) is to specify and estimate an explicit stochastic process
for the state variables. However, for the purposes of flexibility in this dynamic demand
model, I follow De Groote and Verboven (2019) and decompose the expected ex ante value
function into a realized value function and a short run prediction error:

emt = V(smiy1) — E V(Smt+1\8mt)] (B4)

where I assume that households’ expectations are on average correct (i.e., households have
rational expectations) such that e, is mean zero.

Hotz and Miller (1993) and Arcidiacono and Miller (2011) show that it is possible to
express continuation values as functions of the conditional choice probabilities for one of the
terminating options, say 7 = j'. Normalizing the flow utility of non-adoption to the product
of Euler’s constant and the common discount factor, i.e., ug,,; +0.5775 = 0, Arcidiacono and
Miller (2011) show that the assumption of a nested logit error structure provides a helpful
closed form expression for the value function. This combined with the rational expectations
assumption results in the following closed form for the mean utility of non-adoption:

6Omt =EK [V(SmtJrl ’5mt):|
=p (5j/mt+1(3mt+1) — log (msj’mt+1(3mt+1>) (B5)
- 77<10g (msgmt+1(3mt+1)) — log (mSj’mt+1(3mt+1))> - €mt)

where msSgme+1(Smit1) is the inside group share (i.e., the probability of adoption) in market
m and period t.

B.3 Estimating Equation
Combining (B1), (B3), and (B5) and rearranging terms gives the following equation:

log (M) — Blog(msjmis1)

mSomt
= a<<pjmt - Bpj’mt-i—l) - (ijt - 5Tj’mt+1>>
+ n(log(msjmtlg) + ﬂ(log<m$’gmt+1) — 10g<m5j’mt+1))) (B6)

+ (fjmt - 5§j’mt+1) + (g; - 55;”) + (gt — Bgt—&—l)/"i‘ %

N J/ J/ N

~ ~ - mean zero
=Eimi =¢; =&
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Table B1l. Estimated Demand Parameters from a
Dynamic Model

()

‘Dynamic’ Price/Income —16.900
(1.890)
Nesting Parameter 0.423
(0.059)
Firm FE Yes
Year FE Yes
CZ FE Yes
Observations 9,264
R? 0.732
F-test (1st stage), ‘Dynamic’ Price/Income  424.2
F-test (1st stage), Nesting Parameter 133.7

Notes: Estimation follows the procedure outlined in Ap-
pendix B. I divide prices and rebates by county-quarter
mean income whereas for comparison to the static de-
mand estimates in Table 1. Standard errors clustered by
county are reported in parentheses.

The above estimating equation (B6) is a function of data—including current period and lead
values of market shares, prices, and rebates—and the target parameters, («,n), which I can
estimate via ordinary least squares.

Two issues remain before implementing (B6): the choice of reference option, j’, and the
treatment of the scalar unobservable terms, (éjmt, gj,é). In terms of the reference option,
an easy solution would be to use a universal installer that appears across markets. Unfor-
tunately, there is no single installer that operates in each county-quarter in my data. As a
result, I follow Bollinger and Gillingham (2019) and use a market-specific next-period av-
erage for the values of market shares and state variables of the reference option that enter
(B6). This revised estimating equation converges asymptotically to (B6).

To account for the scalar unobservable terms, I include firm and time fixed effects when
implementing (B6). This leaves the scalar unobservable éjmt, which generates a set of anal-
ogous endogeneity concerns to that associated with the static demand model in the text. I
therefore estimate my revised estimating equation (B6) via two-stage least squares, with the
same set of demand instruments as those that I outline in Section 4.1 of the text.

B.4 Results

I report estimates of the main target parameters in Table B1. Overall, the results are
qualitatively consistent with the static demand estimates reported in Column (1) of Table
1. Note that I divide prices and rebates by the county-quarter mean income for the sake
of direct comparison with the static models in the main text. The estimate of the nesting
parameter from the dynamic model is slightly larger, but indistinguishable from that from
the analogous static model. The first-stage F'-statistics for both the nesting parameter and
price parameter are large in magnitude.
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Figure B1. Comparison of Static and Dynamic Demand Elasticities

Unconditional Own-price Elasticity

Static Estimates Dynamic Estimates

0.0

-2.5

-5.0

-7.5

2008 2010 2012 2008 2010 2012

Notes: This figure compares the model-predicted, short-run price elasticities of demand using the static
demand estimates from Column (1) of Table 1 (left panel) and the dynamic demand estimates from
Table B1. The overlaid line shows a cubic b-spline fitted to the short-run price elasticity estimates.

To assess the performance of the static demand model that I use in the text as a reduced
form for dynamic demand, I plot the implied short-run elasticities from the dynamic esti-
mates in Table B1 alongside those from the analogous static model. As shown in Figure B1,
the static model reasonably matches both the level and shape of demand elasticities over
time. While the short-run elasticities from the dynamic demand estimates are in general
larger in magnitude—the median short-run elasticity from the dynamic estimates is —4.75
compared with —3.76 for the analogous static estimates—both are within the range of pre-
viously published static estimates (see Figure G3) and the difference between the two is
relatively minor. Figure B1 suggests that the reduced form demand model used in the main
analysis in the text offers a reasonable approximation.

C Estimating the Exit Policy Function
I estimate firms’ exit policy function using a logit regression:

__exp (hj(smt))
1+ exp (hj(smt))

Pr(Gme = 1sm)

where x7,,, equals 1 if firm j exits market m in period ¢ and 0 otherwise and h;(sp) is a
flexible function of the states. Obtaining consistent estimates of the exit policy function is
important for consistent estimation of the dynamic parameters in the second stage. I there-
fore follow the data-driven approach of Gerarden (2022) to determine the functional form
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of h;(sm:) when estimating firms’ exit policies. This approach has the benefit of optimizing
the tradeoff between a flexible specification and the challenges associated with overfitting.

In particular, I begin by identifying a large set of candidate regressors to use in h;(s,,¢).
These include quadratic polynomials of the full set of state variables and the complete set of
pairwise interactions between these terms.?? I also include county and quarter fixed effects.
I then use LASSO for variable selection. Specifically, I model the discrete decision to exit
using the following penalized maximum likelihood:

mln—[ ijmt (Smt; pt )_bg(l_eXp(hj(Smt;“))) + Allulh

7,m,t

I select the tuning parameter, A, by leave-one-out k-fold cross validation with £ = 10. Figure
C1 shows the resulting estimated binomial deviance for different values of .

This identifies a set of non-zero regressors, izj(smt; f). I then model the discrete exit
decision using a logit model with the non-zero regressors selected in the first stage and
estimate the parameters on the remaining regressors via maximum likelihood:

mln— [ Z ijt (Sme; 1) — log (1 — €Xp (ﬁj(smﬁﬂ)))]

7,m,t

The final step logit model has an estimated binomial deviance of 12.34%. The resulting
parameter estimates allow me to fit exit probabilities for each incumbent observed in my
data. Figure C2 shows the density of fitted exit probabilities for incumbents that I observe
continue and incumbents that I observe exit.

D Identification: Predicted Experience Instruments

As discussed in Section 4.3, identification of the production cost parameters governing learn-
ing economies relies on the validity of the instrumented moment conditions given in equation
(15). A key concern in forming these moment conditions is ensuring that the instruments
are both relevant (correlated with the endogenous variables) and valid (uncorrelated with
the innovation term v;,,;). This appendix provides additional detail on the construction and
justification of the predicted experience instruments used in GMM estimation.

D.1 Instrument Construction

I construct predicted experience instruments by exploiting exogenous variation in demand
shifters and market structure. The construction proceeds in three steps:
Step 1: Reduced-Form Demand Model. I estimate a reduced-form demand model

22T include quadratic polynomials of the following variables and their pairwise interactions: prices, own
experience, other firms’ experience within a county, other firms’ experience outside a county, hardware cost,
the average hardware costs of other firms within a county, quality, the average quality of other firms within
a county, the county-quarter inclusive value, and the aggregate demand state.

A-12



Figure C1. First-step Tuning Parameter Selection via k-fold Cross-validation

Cross-validation of Penalized Binomial Exit Model
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Note: k-fold cross-validation with 10 folds
Notes: This figure shows binomial deviance for different values of A, where binomial deviance
is calculated via leave-one-out k-fold cross-validation with k = 10. The vertical dashed line
shows the value of A that corresponds to the minimum estimated binomial deviance.

Figure C2. Density of Fitted Exit Probabilities

Density

7.5
Observed continuation
Observed exit

5.0

25

0.0

0.0 0.2 0.4 0.6

Fitted Exit Probability

Notes: This figure shows the density of the resulting fitted exit probabilities separately for
incumbents that I observe continue and incumbents that I observe exit.
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that regresses log market shares on exogenous demand and cost shifters:
10g(Sjmt/Somt) = QrTjmt + 0gni GHLp + veecElecPrice,,, + & + oy + & + G log(sé-’;ffde) + Ejmt

where 7,,; is the rebate per watt, GHI,,; is solar radiation in the county, ElecPrice,,; is the
average electricity price, &;, &y, and a, are installer, year, and commuting zone fixed effects
respectively, and sjﬁff‘ie is the inside market share. To address the endogeneity of inside
shares, I instrument using the number of firms in the market (/V,,,;) and the total experience
of rival firms in the county (3 ;_; Erme)-

Step 2: Predicted Quantities. Using the fitted values from this demand model, I
construct predicted market shares 3;,,,; for each firm-county-period. I then convert these to

predicted quantities:
Qjmt = 8;me X PotentialMarket,,,, x MeanSystemSize,,,,

Step 3: Predicted Experience. I construct the predicted own experience instrument
as the predicted quantity normalized by total industry experience in the first half-year of
the sample (H1 2008):

ijmt
IndustryExperiences; 9008

e —
zjmt -
The predicted rival experience instrument is the sum of all other firms’ predicted experience
in the same county-period:
spill 2 : e
ijt - Zkmt

k#j

D.2 Instrument Validity

The validity of these instruments rests on two key assumptions:

Assumption 1: Exogeneity of Demand Shifters. The demand shifters used in the
reduced-form model (rebates, solar radiation, electricity prices, and market structure) must
be orthogonal to the innovation term v;,,,; in the productivity shock process. This is plausible
because:

e Rebate levels are determined by cumulative installed capacity in each utility service
territory based on a predetermined schedule, not by individual firm productivity shocks

e Solar radiation is a geographic characteristic determined by weather patterns
e Electricity prices are set by utility rate cases and regulatory proceedings

e The number of firms and rival experience in period t are predetermined relative to the
innovation in period ¢

Assumption 2: Serial Uncorrelation of Innovations. The innovation term v, =
Kjmt — PRjmi—1 Mmust be serially uncorrelated by construction. This is ensured by the AR(1)
specification of the productivity shock process, where any serial correlation in x;y, is captured
by the parameter p.
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Given these assumptions, the predicted experience instruments satisfy the moment con-
dition E[Z],,Vjmi] = 0 because they are constructed using only exogenous demand shifters
and predetermined state variables.

D.3 Instrument Relevance

Figure D1 provides evidence on instrument relevance by showing the relationship between
the predicted experience instruments and actual experience measures. The figure displays
binscatter plots (30 bins) of residualized relationships after controlling for year fixed effects.

The top-left panel shows a strong, positive relationship between the predicted own expe-
rience instrument (25,,,) and actual own experience (Ej,), demonstrating strong first-stage
relevance. The fitted line has a steep positive slope, indicating that the predicted experience
instrument based on exogenous demand shifters is highly correlated with actual experience
accumulation.

The second panel from the left in the top row shows the relationship between the predicted
rival experience instrument (zjf,ﬁl) and actual own experience. While this relationship is
weaker than the own-experience relationship, it remains positive, reflecting the fact that
firms operating in markets with many rivals (which drives predicted rival experience) also
tend to have accumulated more experience themselves due to market selection effects.

The remaining panels show that the predicted experience instruments have weak or no
relationship with own hardware costs and mean rival quality after controlling for year ef-
fects. This is reassuring because it suggests the instruments provide identifying variation in
experience that is not confounded by variation in other cost components or quality measures.

The figure also displays both current and lagged versions of each instrument (in orange
circles and blue triangles, respectively). The lagged instruments, which are included in the
actual instrument matrix Zj,,; used in estimation, show similar patterns of relevance, ensur-
ing that the instruments provide valid identifying variation even when lagged one period.

D.4 Overidentification

The GMM estimation uses five instruments (z]‘fmt, z;f,ﬁl, lagged hardware costs, a time trend,
and lagged installation-adjacent wages) to estimate four production cost parameters (cq, v,
0¥, and p) plus the exit cost parameter (c4). The fact that the model fits the data well (as
shown in Section 5) and that the parameter estimates are stable across different instrument

specifications provides informal support for the validity of the instruments.

E Value Function Approximation

In light of the fact that the conditions for optimal quantity-setting, exit, and entry all depend
on Vj(sm:), estimation of the target structural parameters requires solving for the unknown
value function. As discussed in the text, I approximate the value function via B-spline ba-
sis functions. Value function approximation is appealing in my setting for several reasons.
First, given the high dimensionality of the model’s continuous state space, conventional ap-
proaches that rely on discretization of the states remain computationally-intensive and can
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Figure D1. Instrument Relevance for Predicted Experience Instruments
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Notes: This figure shows the relationship between the predicted experience instruments used in GMM
estimation of production and exit cost parameters and actual experience measures. The predicted
experience instruments are constructed by first estimating a reduced-form demand model that regresses
log market shares on rebates, solar radiation (GHI), average electricity prices, installer fixed effects,
year fixed effects, and commuting zone fixed effects, instrumenting for inside shares using the number
of firms and rival experience in the county. Fitted values from this demand model are used to construct
predicted quantities and thus predicted cumulative experience for each firm-county-period. The figure
shows binscatter plots (30 bins) of residualized relationships after controlling for year fixed effects. The
top row shows the relationship between predicted own experience (left) and predicted rival experience
(second from left) instruments and actual own experience, demonstrating strong first-stage relevance.
The remaining panels show relationships with own hardware cost and mean rival quality. Both current
and lagged versions of each instrument are shown, with current instruments in orange circles and lagged
instruments in blue triangles.

produce non-trivial approximation errors in this setting. Second, given that the value func-
tion implicitly defined by the Bellman equation in this setting is nonlinear in parameters,
popular forward simulation approaches are computationally-infeasible in this setting. This
non-linearity is due to the fact that static profits are a function marginal production costs,
which are nonlinear in the learning parameters. Moreover, Barwick and Pathak (2015) and
Kalouptsidi (2018) provide Monte Carlo evidence to suggest that value function approxima-
tions perform well in estimating dynamic games.
As shown in the main text, given my assumption that scrap values, ¢;,,; are i.i.d. expo-
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nential, it is possible to write the value function prior to the realization of ¢;,,; as

Vi(smt) = Eg[Vj(Smt, dme)] = Eo[m;(sme) + max{djme, CVj(sme)}]
=7 (Smt) + P} (8mt) B[ djme| djme > CVj(sme)] + (1 — 5 (8me) ) OV (i)
= ;i (Smt) + p?(smt)aqﬁ + CVj(Sme) (E1)

where the final line follows from the fact that Ey[@me|@jme > CVj(sme)] = 04 + CVi(Sp) as
shown by Pakes et al. (2007).

Having obtained estimates of the static demand parameters, exit policy functions, and
state transition processes in the first step of estimation, it is possible to obtain a flexible
approximation of the value function implicitly defined by the Bellman equation (E1) following
recent work in the dynamic games literature (e.g., Barwick et al. (2025)). In particular, given
the smoothness of the value function in this context, it is possible to approximate the value
function arbitrarily well using L B-spline basis functions b} (sm):

L L

Vi(Sme) = > A (Smme) CVj($mt) = B ME[B (smrs1)|5mi] (E2)

=1 =1

where bé»(smt) are basis functions of the state variables and \; are coefficients to be estimated.
Plugging (E2) into (E1) gives

L L
D N (smt) = 75 (S5 0°) + DY (Sma) T + B Y NE[B (Smts1)|Simi] (E3)

=1 =1

where ¢ = (cg, 0%, v) are the production cost parameters governing learning. From (E3), it
is possible to recover estimates \; using data, estimated exit policy functions, and estimated
state transitions for a given set of parameter values (6%, 0y):

(M}, = arg min [V (smes A) = 75 (53 0°) = 57 (smt) o5 = OVi(smis M), (B4)

where I am choosing approximating coefficients, {Xl}le, that minimize the L? norm of
violations of the Bellman equation (E1).

Firm value functions are a function of a high-dimensional state vector. To ease the com-
putational burden associated with approximating firm value functions, I follow the model’s
simplifying assumption about the approximating equilibrium concept and use moments of the
state variables of a firm’s rivals when forming approximating basis functions. In particular,
I form basis functions of the following variables to approximate firms’ value functions:

o I, firm j’s own experience in market m in period ¢

o L™

Tt = Dk Ernet total experience of firm j’s rivals in market m in period ¢

e ES, =, 2m 2 nzj Eru: total experience of firm j’s rivals in markets outside of market

m in period ¢
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® iy firm j’s average hardware costs in market m in period ¢

® Nine and hyy, Yk # 4,1 # m: within- and out-of-county averages of firm j’s rival firms’
hardware costs in period ¢

o {me: firm j’s quality in market m in period ¢

o Sy and Ey, VE # 4,1 # m: within- and out-of-county averages of firm j’s rival firms’
quality in period ¢

e d,;: aggregate demand in market m in period ¢
e [, inclusive value in market m in period ¢

I augment the basis functions formed with these 11 variables with the full set of county
fixed effects when approximating firms’ value functions in order to account for differences in
expected discounted returns across counties not captured by the above variables.

To select the basis function of the above 11 variables, I test how well B-splines of different
orders with different percentile knots fit observed revenue data, since value functions measure
expected discounted profits which are functions of revenues. I ultimately select third-order
B-splines (i.e., quadratic piecewise polynomials with 3 interior knots). I approximate the ex-
pectation in (E3) by averaging state values over 1000 draws of the estimated state transition
processes.

A key remaining issue is the set of state realizations on which to evaluate the approximate
Bellman equation E3. Similar to Sweeting (2013) and Barwick et al. (2025), I construct a
sample of state realizations that includes both all states observed in the data as well as a set
of states randomly drawn to span the support of the state variables. In particular, I draw
50,000 additional realizations of the state variables where I independently draw at random
each state variable from its empirical support. I then used the fitted exit policy function to
predict exit probabilities at each of these additional realizations of the state and estimate
simple linear fits of prices and quantities on observed realizations of the state to allow me
to predict profits at these simulated states. I ensure that these additional realizations of
the state are uniformly distributed across counties and quarters in my estimation period. I
estimate {\,}2, via E4 using the full set of observed and simulated realizations of the state.

These additional states ensure that I obtain a good approximation of the value function in
estimation for two reasons. First, some states (for example, hardware costs and experience)
are correlated in the observed data, which makes it difficult to separately identify the basis
function coefficients on these variables. Second, parts of the state space are relatively sparse:
for instance, certain counties have relatively few observations spanning small regions of the
state space in the realized data. These simulated states are therefore quite important in
providing a good approximation of the value function.

Figure E1 shows binned scatterplots and third order polynomial fits of the relationship
between nine state variabels and the final value function estimates from the main production
and exit cost parameter estimtes reported in column (1) of Table 2.
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Figure E1. Relationship between State Variables and Value Function Estimates
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Notes: This figure shows binned scatterplots and third order polynomial fits of the relationship between
nine state variables and the final value function estimates from the main production and exit cost
parameter estimates reported in column (2) of Table 2. Value function approximation follows the
procedure discussed in detail in Appendix E. Value function estimates are reported in millions of 2013

USD.

F Counterfactual Solution Method

Simulating counterfactual policy environments requires a method for solving the model. My
approach to solve the model builds on the method of Sweeting (2013), which adapts para-
metric policy iteration (Benitez-Silva et al., 2000) to allow for value function approximation.
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My approach is similar to other counterfactual solution methods in applied settings in the
literature (Barwick et al., 2025; Gerarden, 2022).

As was the case in estimation, the high-dimensionality and continuous nature of the
state space presents a challenge in solving the model. As a result, I maintain the approach
to value function approximation outlined in Appendix E.?* Solving the model involves two
steps: first, solving for the new Bellman equation, policy functions, and product market
equilibrium, and second simulating the industry forward one period. In each counterfactual
scenario, I initiate this two-step procedure at the observed data in the first period of my
main estimation sample—the first quarter of 2008—and then repeat the two-step procedure
until I reach the end of the main estimation—the last quarter of 2013.

F.1 Solving a Single Period

[ implement the first step of this counterfactual solution method via a fixed point algorithm.
For a given iteration of this fixed point algorithm, ¢, I take the following steps:

1. Compute static profits at each state, W;(Smt; éc), where 6° = (¢o, oF 4) are the preferred
production cost parameter estimates, using equilibrium prices, p;(Smt); market shares,
msj-(smt); and continuation values, CVji(smt) from the previous fixed point iteration.

2. Solve for the value function approximating coefficients, Ai™! using
‘/ji-i-l(smt; )\i+1> — W;(Smt; ec) + 6¢p§7i(5mt) + C‘/ji—i-l(smt; )\i+1)

where W;(Smt; éc) is from step 1, 64 corresponds to the preferred exit parameter esti-
mate, pf’i(smt) is the equilibrium exit policy function from the previous iteration, and
I form the expectation in CV;*! (sp,; A7) by averaging state values over 1000 draws
from the state transition processes estimated in the first stage.

4 it .
3. Update the exit policy function, pf’”l(smt), using C’V;r (Sme; A1) and the closed form

solution for firms’ exit probabilities.

4. Update equilibrium market shares, ms§+1(smt), and prices, p§+1(smt), by fixed point

iteration using the closed form for market shares from the demand model and firms’
il .

quantity-setting first order condition, the latter of which uses C’Vj+ (Smt; AT in cal-

culating the optimal dynamic markdown term.?*

23] make several minor changes to the value function approximation approach used in estimation. In
particular, I do not use simulated states to estimate the approximating coefficients. This is due to the fact
that the approach to solving the model requires finding new equilibrium exit policies and equilibrium in the
product market via fixed point iteration. Whereas it was simple to use first stage estimates to fit simulated
exit policies and product market variables at simulated states, doing so for a large number of simulated states
presents a computational challenge in solving the model, so I prioritize approximating the value function at
the observed states.

24Tn practice, convergence of the fixed point iteration on firms’ quantity-setting first order condition is
reliable and rapid. I iterate this procedure until the norm of the difference of the price vectors from successive
iterations falls below 1071°.
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5. Check whether |[p™!(s,,¢) — p™"(smt)|| < tol, where p™**1(s,,;) is the stacked vector
of firms’ exit policy functions and tol = 10~%. If this condition is met, the iterations
stop; if not, iteration ¢ + 1 starts with step 1 above.

The above procedure produces conditional exit probabilities at each state in a given period
as well as value function approximating coefficients. I use these value function approximating
coefficients and a set of assumptions about the states of potential entrants to calculate
conditional entry probabilities for that period. In particular, I use the resulting value function
approximating coefficients and expected values of the state variables in the next period for all
potential entrants to calculate conditional entry probabilities, where expected values of the
state variables in the next period are calculated using the observed aggregate state variables
and assuming that entrants are endowed with random values of the non-deterministic state
variables drawn from the empirical distribution of observed states.?’

F.2 Simulating Forward

Armed with conditional exit and entry probabilities for incumbents and potential entrants
in a given period from the first step, I can then implement the second step of solving the
model: simulating the industry forward one period. In particular, I take a single draw from
the conditional exit and entry probabilities and then implement firms’ resulting, discrete exit
and entry decisions. For the next period’s new incumbents and potential entrants, I then take
a single draw from the state transition processes estimated in the first stage of estimation.
The simulated industry then proceeds to the next period and the fixed point algorithm
outlined above is used to solve for policy functions in the next period. As noted above, I
begin the counterfactual solution process at the observed data in period 1 of my estimation
sample, 2008 Q1. I then repeat this process of solving a single period and simulating forward
until the final period of my estimation sample, 2013 Q4. I therefore repeat this procedure 24
times, simulating the model forward 6 years or 24 quarters. Given that each time I simulate
the industry forward I take single draws from the conditional exit and entry probabilities as
well as the state transition processes, I repeat this process of simulating the model forward 6
years multiple times and average the results across the full set of forward-simulated industries.
In practice, I repeat this process of simulating the model forward 6 years 60 distinct times
for each counterfactual scenario and then average key outcomes across all 60 model runs.
One important idiosyncrasy in this step that is worth noting is how I model installed
capacity. Given that my price and rebate fields are denominated on a per watt basis, I need
to know firms’ total installed capacity in watts in order to calculate firm profits; however,
my demand model only predicts adoption, not the size of individual installed systems. In
estimation, I observe total installed capacity in the data; however, nothing in my model
allows me to predict this field in solving counterfactuals. Moreover, given that I define
experience in terms of cumulative installed capacity (in watts), knowing watts of capacity
installed each period is important for updating experience levels each period. I therefore
take the simple approach of assuming that each installation predicted by my demand model

25Naturally, entrants enter with zero experience. As in estimation, I calculate the expectation of future
state variables for entrants conditional on entry by averaging state values over 1000 draws from the state
transition processes estimated in the first stage.
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has a capacity equal to the sample average system capacity in my processed estimation data,

which is around 4-5 kW.

F.3 Subsidy Levels

Given that the main policy counterfactuals of interest involve adjusting the subsidy envi-
ronment, it is worth discussing how I treat subsidy levels in solving counterfactuals. In the
case of CSI rebates, despite the fact that these subsidy levels are conditional on cumula-
tive installed capacity (see Figure G2), which itself is defined by lagged demand for solar
PV installations, I choose to not endogenize the timing of CSI rebate changes when solving
counterfactual scenarios with the CSI in place. While I could easily endogenize the CSI step
changes in my model given that my model predicts demand for solar PV installations each
period, I choose not to given that I do not explicitly model system capacity as discussed
above. Moreover, the fact that I omit self-installations and subset the estimation data as
described in Appendix A, even with my assumption about counterfactual installed system
capacity described above, I would be guaranteed to under-predict cumulative installed ca-
pacity and therefore implement counterfactual subsidy levels that are higher than they likely
should be. I therefore hold fixed the date of each CSI rebate step change from the observed
data (shown in Figure A1) in any counterfactual that implements the CSI.

Implementing the federal investment tax credit (ITC) is relatively straightforward as
this is just a fixed proportion of the post-rebate price. Implementing net energy meter-
ing (NEM) counterfactuals is more challenging given that utilities directly recover NEM
payments through retail electricity rates. As a result, I hold NEM fixed in place in all
counterfactuals.

F.4 Counterfactual Environmental Damages

Simulating the model forward as described above generates a set of key outcomes for each
counterfactual scenario, including market structure outcomes (number of entries, number
of exits, market concentration, etc.) as well counts of installed systems and measures of
consumer surplus predicted from the demand model and total profits and cost components
predicted from the supply model.

Given that a key policy justification for incentivizing the adoption of solar PV is to
reduce electricity generation from legacy, alternative electricity generation sources such as
coal and natural gas-fired power plants, I use the quantities of solar PV adoption predicted
for each counterfactual scenario to conduct a back-of-the-envelope calculation of any avoided
environmental damages from the solar PV subsidies. The external social benefits of solar PV
subsidies are a function of the quantity of solar PV adopted due to subsidies, the amount of
electricity produced by these systems, and the external damages associated with alternative
electricity generation sources displaced by this additional solar capacity. I use estimates
of the marginal environmental benefits of additional solar capacity in the US from Sexton
et al. (2021). These estimates account for both the marginal external damages from harmful
local air pollutants as well as carbon dioxide. Using rich data on electricity generation, solar
insolation, and air pollution transport, Sexton et al. (2021) produce spatially-differentiated
estimates of the marginal environmental benefits of additional solar capacity that account
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for substantial heterogeneity in solar generation, displaced pollution emissions, and marginal
costs of electricity over space and time. These off-the-shelf estimates therefore allow me
to account for variation across the state of California in not only the lifetime generation
potential of additional solar capacity, but also characteristics of the electricity grid.
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G Supplemental Figures and Tables

Figure G1. Costs and Discounted Benefits of a 5 kW PV System in California, 2000-2020
Costs, Discounted Benefits (2013 USD)

<«<—— CSI Program (2007-2013) —>
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Notes: This figure shows the evolution of the upfront installation cost and present discounted benefits of
a representative 5 kilowatt (kW) residential PV system in California from 2000 to 2020. Data on average
installation costs and rebates in California come from the Lawrence Berkeley National Lab’s “ITracking
the Sun” database (Barbose et al., 2022). Data on net retail electricity rates, expected PV output,
and net metering policy come from the Energy Information Administration’s Form 816, the World
Bank Group’s Global Solar Atlas, and California Public Utilities Commission materials, respectively. I
assume a real interest rate of 3% to calculate present values and assume a system lifespan of 25 years,
annual household PV energy consumption totaling 6000 kW-hours, and PV power potential equal to
the average for the state in order to calculate electricity consumption and net metering benefits.
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Figure G2. CSI Rebate Rate Structure
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Notes: This figure shows the rebate llevels under the California Solar Initiative (CSI) as a function
of cumulative-installed capacity. This figure is inspired by a similar figure that appears in Pless and
Van Benthem (2019).
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Figure G3. Estimated Own Price Elasticities

Own Price Elasticity Estimates
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Notes: This figure shows the distribution of estimates of the own price elasticities of demand for all
firm-county-quarter observations in the main estimation sample estimated using the random coefficients
nested logit model reported in Column (3) of Table 1. Estimates of the adoption decision elasticity from
the literature are reported below the horizontal axis (Bollinger and Gillingham, 2019; De Groote and
Verboven, 2019; Gerarden, 2022; Gillingham and Tsvetanov, 2019; Hughes and Podolefsky, 2015).
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Figure G4. Relationship between Total PV Installation-related Employment, Wages and
Installations

Log(Total Employment) Log(Avg. Wage)
10.0 3 = ey
ay
o ‘!,‘ .‘,yyw.‘ > 8
] o o5 R g "' .

a i o PR X
5| § F 0 EoReT I N Gl
4 gl 82 i
H " SRAD IS

5.0

25

0.0 25 5.0 7.5 0.0 25 5.0 7.5

Log(# Installations) Log(# Installations)
Notes: This figure shows the relationship between total quarterly PV installation-related employment
and the average PV installation-related wage in a county and the quarterly total number of residential
PV installations within that county. Data on employment levels and wages are from the US Census
Bureau’s Quarterly Census of Employment and Wages and include the quarterly number of workers in
the roofing and electrician industries. The blue circles depict binned means; the blue line shows the
linear relationship between the log of total PV installation-related employment/wages and the log of
total installations; and the black points represent the raw data.
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Figure G5. Average CSI Project Completion Time Added
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Notes: This figure shows the quarterly average observed time added to residential solar PV installations
that apply for California Solar Initiative (CSI) rebates separately for rebate program administrators and
installers. Quarterly averages are reported separately by each of the three main investor-owned utili-
ties (IOUs): San Diego Gas and Electric (SDG&E), Pacific Gas and Electric (PG&E), and Southern
California Edison (SCE). Rebate-level data for the CSI obtained from the California Public Utilities
Commission provide dates for detailed rebate processing milestones, which allow me to attribute cumu-
lative time added to rebate processing due to the IOUs (left panel), which serve as the rebate program
administrators, and individual installers (right panel). The lines show cubic b-splines, which I estimate
separately for each IOU.
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Figure G6. Average Permitting Time for PV Projects, San Diego County
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Notes: This figure shows the quarterly average time-to-completion for solar photovoltaic (PV)-related
permits in San Diego County, California. Permit-level data on historical developments permits are
available from https://data.sandiego.gov/datasets/development-permits-setl/ (last accessed
August 10, 2023). These permit-level data provide dates for key project milestones, including the date
a permit application is received and the date a permit is approved. To identify PV-related permits, I
use an existing category of permit types in the data that distinguishes PV-related electrical permits;
however use of this category appears to become widespread in the data starting in 2012. I therefore
identify electrical permits in earlier years that are likely for PV-related projects by matching keywords
(e.g., “PV,” “solar,” and various iterations of these terms) in a detailed project description field. The
overlaid line shows a cubic b-spline fitted to the average time-to-completion data.
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Table G1. Estimated Transition Processes for Aggregate State Variables

Potential Market

Avg. Price (3/W)

Inclusive Value

(1) (2) (3) (4) (5) (6)
Intercept -36.81 -0.200 0.260
(14.71) (0.061) (0.048)
(Potential Market);—;  0.997 0.994
(0.0001)  (0.035)
(Avg. Price);—q 0.982 0.983
(0.009)  (0.009)
(Inclusive Value);_ 0.777  0.7112
(0.055)  (0.087)
County FE Yes Yes Yes
Observations 363 363 363 363 363 363
R2 0.99 0.99 0.91 0.91 0.56 0.58
Within R2 0.74 0.91 0.44

This table reports estimates of the first-order autoregressive (AR(1)) transition pro-
cesses for three county-quarter aggregate state variables, demand (number of potential
adopters), average price per watt, and the inclusive value. The table reports two sep-
arate specifications for each state variable, one each with and without county-specific
intercepts. Standard errors clustered at the county-level are reported in parentheses.

Table G2. Estimated Transition Processes for Firm-specific State Variables

Own Quality

Hardware Cost ($/W)

Price ($/W)

(1) (2) (3) (4) (5) (6)
Intercept -1.342 0.263 0.729
(0.173) (0.024) (0.043)
(Own Quality);—q 0.794 0.736
(0.026) (0.042)
(Hardware Cost)¢—1 0.878 0.876
(0.006) (0.005)
(Price);—1 0.840 0.835
(0.006)  (0.006)
County FE Yes Yes Yes
Observations 6,527 6,527 6,527 6,527 6,527 6,527
R? 0.70 0.71 0.77 0.77 0.72 0.72
Within R? 0.54 0.76 0.71

This table reports estimates of the first-order autoregressive (AR(1)) transition pro-
cesses for three firm-county-quarter state variables, own quality (which is derived from
the demand system estimates), hardware cost per watt, and price. The table reports two
separate specifications for each state variable, one each with and without county-specific
intercepts. Standard errors clustered at the county-level are reported in parentheses.
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Table G3. Estimated Production and Exit Cost Parameter Estimates for
Different Discount Factors

Annual Discount Factor: =09 =087 S=0.85
Parameter (1) (2) (3)

Production Cost Parameters

Learning Exponent ~ -0.274 -0.363 -0.606
(0.157) (0.150) (0.327)

Hardware Cost T -0.673 -0.654 -0.591
(0.027) (0.050) (0.094)

Base Cost Co 0.153 0.643 0.637
(0.342) (0.256) (3.524)

Productivity Serial Correlation P 0.420 0.420 0.424

(0.003) (0.007) (0.015)
Experience Parameters
Rival Experience: In-market oF 0.641 0.735 1.540
(0.281) (0.253) (3.570)
Ezit Parameter

Mean Scrap Value 0o 82.655 49.698 36.597
(4.668) (3.062) (2.960)
Installer, County, Year FE Yes Yes Yes
N 7,351 7,351 7,351
Spence Coef. (1 —27) 0.173 0.223 0.343

Notes: Estimation follows the procedure outlined in Section 4.2. There are 7,351
observations at the installer-county-half-year level. I normalize experience vari-
ables by the industry total experience level in the first half year of the sample
(H1 2008). All effective experience parameters can be interpreted as marginal
experience contributions relative to a firm’s own experience. The “forgetting pa-
rameter,” §, describes the rate of learning depreciation from one period to another.
The mean scrap value parameter is measured in 100,000 2013 USD. The “Spence
Coefficient” describes the proportional reduction in cost from a doubling of ef-
fective experience. Standard errors are calculated using the Bayesian Bootstrap
with bootstrap weights clustered by county (Rubin, 1981). Bootstrap weights for
each county are drawn according to a Dirichlet distribution with o = 1 across 200
bootstrap samples.
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Table G4. Estimated Production and Exit Cost Parameter Estimates
with Scale as a State Variable

State Variables: Baseline +Firm Size

Parameter (1) (2)
Production Cost Parameters
Learning Exponent vy -0.363 -0.371
(0.150) (0.162)
Hardware Cost T -0.654 -0.602
(0.050) (0.035)
Base Cost Co 0.643 0.748
(0.256) (0.233)
Productivity Serial Correlation P 0.420 0.426

(0.007) (0.004)
Experience Parameters
Rival Experience: In-market oF 0.735 0.755
(0.253) (0.438)
Exit Parameter

Mean Scrap Value o4 49.698 43.640
(3.062)  (1.859)
Installer, County, Year FE Yes Yes
N 7,351 7,351
Spence Coef. (1 —27) 0.223 0.227

Notes: Estimation follows the procedure outlined in Section 4.2. Column (1)
corresponds to the baseline preferred specification of the model in Column (1)
of Table 2. Column (2) re-estimates this specification but adds firms’ current
period size (i.e., production quantity) as a state variable to account for static
economies of scale. I normalize experience variables by the industry total
experience level in the first half year of the sample (H1 2008). All effective
experience parameters can be interpreted as marginal experience contributions
relative to a firm’s own experience. The “forgetting parameter,” §, describes
the rate of learning depreciation from one period to another. The mean scrap
value parameter is measured in 100,000 2013 USD. The “Spence Coefficient”
describes the proportional reduction in cost from a doubling of effective ex-
perience. Standard errors are calculated using the Bayesian Bootstrap with
bootstrap weights clustered by county (Rubin, 1981). Bootstrap weights for
each county are drawn according to a Dirichlet distribution with o« = 1 across
200 bootstrap samples.
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