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1 Introduction

Outdoor recreation is an industry of both intrinsic and instrumental value. Private spending

on recreational activities represents 2.2% of United States GDP annually (Bureau of Eco-

nomic Statistics, 2023) and participation in outdoor recreation activities has increased in

recent decades, with visitation to outdoor sites administered by the National Park Service

rising by 16% over the period from 2010-2019 (National Park Service, 2020).

In addition to being an economically-meaningful industry, outdoor recreation provides

insight into individuals’ interactions with the natural environment. Environmental condi-

tions at outdoor recreation sites generate substantial non-market value to visitors, affecting

the quality of visitors’ experience. As a result, decisions of which outdoor recreation sites

to visit reveal how individuals’ value the natural amenities of those sites. This argument

motivates a large literature in the estimation of non-market, environmental amenities, which

builds off of Hotelling (1947)’s simple insight that consumption of an outdoor recreation

site’s amenities requires individuals to incur the cost of a trip to that site. Since recreation

sites are just bundles of attributes—including, for example, the types of outdoor activities

supported, environmental qualities, and physical amenities, among others—researchers can

use observed travel costs to infer how tradeoff differences in environmental amenities.

This paper examines how two common challenges in demand estimation—omitted vari-

able bias and measurement error—affect recreation demand models. Individual-level travel

costs, often seen as a strength in this context, can worsen these issues due to non-random

residential sorting and difficulties in accurately observing these costs. Numerical simulations

reveal that conventional recreation demand estimates are significantly biased. To address

this, I propose a simple instrumental variables approach that consistently outperforms tradi-

tional models. In an empirical example replicating English et al. (2018), this method reduces

estimates of the welfare costs of the 2010 Deepwater Horizon oil spill by 12%.

Since the seminal work of Wright (1928), economists have recognized the fundamental

identification challenge associated with estimating one or more coefficients of a system of

simultaneous equations. For example, the empirical relationship between observed prices

and quantities for a good reflects a set of equilibrium points on both the supply and demand

curves for that good, making it impossible to estimate either the demand or the supply curves

from these data alone. More broadly, there are many empirical contexts in which economists

have good reason to believe that some unknown, unobserved factor simultaneously affects

both the outcome of interest and an observed, explanatory variable. Failing to account for

this empirical reality can substantially bias results.

Despite this, researchers often assume that individual-specific travel costs are exoge-
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nous in recreation demand models; however, travel costs—implicitly a function of residence

choice—may correlate with unobserved characteristics. For example, if anglers choose homes

near desirable fishing sites, estimates of price responsiveness in recreation demand will be

biased, as they are effectively paying less for a higher-value good. Empirical evidence shows

that individuals sort based on natural amenities, with long-term migration trends toward

environmentally-rich rural areas (Hjerpe et al., 2020; Rickman and Rickman, 2011). Studies

also document sorting based on preferences for spatial characteristics, such as climate and en-

vironmental quality, echoing Tiebout (1956)-like sorting behavior (Albouy et al., 2016; Bayer

and Timmins, 2007; Bayer et al., 2009; Klaiber and Phaneuf, 2010). The hedonic property

framework of Rosen (1974)—a workhorse methodology in environmental economics—also

implicitly assumes preferences for environmental qualities affect residence location choices.

Researchers have long acknowledged the challenges associated with mismeasured variables

in statistical and econometric analysis, which can often lead to attenuation in estimates of

relationships of interest (Hausman, 2001). In the recreation demand context, this issue is

particularly acute: researchers and analysts rarely have access to the true cost of travel

associated with realized trips, let alone the full set of travel costs in an individuals’ choice

set. Analysts must therefore use information on residence location and the location of sites

in combination with a set of simplifying assumptions to construct estimates of travel costs.

Though there is a well-documented set of best practices for doing so (Lupi et al., 2020)

this approach easily leads to measurement error in the price of recreation activities, which

produces biased results (Angrist and Krueger, 2001; Hausman, 2001).

Few applications of recreation demand modeling take either omitted variables-induced

endogeneity or measurement error in prices seriously, despite good reason to believe that

both concerns are non-trivial in this context. Rather, these applications make the strong

assumptions that all factors influencing demand for recreation consumption are observed

and well-measured. To demonstrate the impact of these assumptions on the inferences we

draw from these models, I simulate several site choice datasets that have either non-random

selection into travel cost, mismeasured travel costs, or both and find that the standard

models that ignore these challenges produce inaccurate results.

To address both of these challenges in recreation demand estimation, I adapt a standard

econometric approach that accounts for endogeneity in discrete choice models to the recre-

ation demand context. Specifically, I outline how a two-stage control function approach to

recreation demand estimation can mitigate concerns of bias introduced by travel cost en-

dogeneity. This approach, first introduced by Heckman (1978), is widely applied in other

contexts, including the management literature (Petrin and Train, 2010; Villas-Boas and

Winer, 1999). The approach is analogous to the two-stage least squares estimator in linear
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models, which is known to sufficiently account for bias introduced by omitted variables and

measurement error (Angrist and Krueger, 2001). In the first stage, travel cost is regressed in

a linear model on a set of instruments which plausibly satisfy instrument relevance and an

exclusion restriction and the residuals from this regression are included in estimation of the

non-linear discrete choice model of site choice in the second stage. I demonstrate the effec-

tiveness of this two-stage control function approach using the simulated site choice datasets

and find that this relatively straightforward correction substantially outperforms standard

approaches to recreation demand estimation.

To demonstrate the relevance of these challenges, I replicate English et al. (2018)’s na-

tionwide model of Gulf Coast recreation demand, which played a key role in compensatory

litigation in the aftermath of the 2010 Deepwater Horizon oil spill. I estimate two versions of

the model: one ignoring travel cost endogeneity and measurement error, and one addressing

them using a two-stage control function approach. Accounting for these issues alters welfare

estimates by up to 12%, a significant difference in this policy-relevant context.

These findings relate to a large literature on non-market valuation of environmental

amenities. Empirical recreation demand models build on McFadden (1974)’s random utility

maximization framework to evaluate a number of different environmental attributes, includ-

ing water quality changes (Abidoye and Herriges, 2012; Abidoye et al., 2012; Egan et al.,

2009; Smith et al., 1986), fish abundance (Kling and Thomson, 1996; Parsons et al., 2000;

Shaw and Ozog, 1999), beach width (Parsons et al., 1999), and a host of physical site ameni-

ties (Hicks and Strand, 2000). A similarly expansive literature leverages the hedonic prop-

erty framework of Rosen (1974) to estimate the capitalization of non-market environmental

amenities in housing prices. The hedonic framework has been applied to value proximity

to hazardous waste sites (Greenstone and Gallagher, 2008), changes in air quality (Bajari

et al., 2012; Bento et al., 2014), proximity to shale gas wells (Muehlenbachs et al., 2015),

flood risk (Hallstrom and Smith, 2005), and water quality (Keiser and Shapiro, 2019).

This paper documents a logical inconsistency between these two vast literatures on non-

market valuation in environmental economics. On the one hand, recreation demand esti-

mation assumes that residential sorting is independent of the environmental amenities they

study; however, the hedonic framework finds that households make residence location choices

at least in part based on these factors. Existing work similarly seeks to bridge the gap be-

tween these two methods: Phaneuf et al. (2008) point out that conventional hedonic property

studies estimating willingness-to-pay for non-market environmental amenities do not fully

incorporate recreational use values and propose a two-stage approach to add these values

to hedonic estimates. Kuwayama et al. (2022) apply the approach of Phaneuf et al. (2008)

to estimate willingness-to-pay for water quality improvements in Tampa Bay, FL and find
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meaningful differences from standard methods. I build on this literature by demonstrating

the importance of accounting for not only recreation demand in models of residence location

choice, but also residence location choices in models of recreation demand.

Existing research acknowledges these empirical challenges in recreation demand models.

Parsons (1991) highlights price endogeneity due to preference-based sorting but offers no

solution for structural discrete choice models. Murdock (2006) and Abidoye et al. (2012)

develop methods to control for unobserved site-specific attributes with alternative-specific

constants, though this does not address individual-level travel cost endogeneity. Timmins

and Murdock (2007) use instrumental variables for site congestion but not for price endo-

geneity. von Haefen and Phaneuf (2008) combine stated and revealed preference data to

account for site quality in the presence of unobservable characteristics. Keiser (2019) docu-

ments bias from measurement error in environmental attributes. This paper contributes to

earlier work by focusing specifically on endogeneity and measurement error in travel costs,

offering a simple approach to mitigate these issues.

The remaining sections of the paper are organized as follows. Section 2 presents a stan-

dard discrete choice model of recreation demand that follows a class of models commonly

found in the literature. Section 3 discusses each of the two challenges with conventional recre-

ation demand models and provides simulation evidence of the potential bias resulting from

these challenges. Section 4 presents the two-stage control function solution and documents

the substantial performance gain of this estimation approach in simulated data. Section 5

replicates the recreation demand model application of English et al. (2018) with the control

function correction and Section 6 concludes.

2 A Standard Model of Recreation Demand

This section presents a standard discrete choice model of demand for recreation sites. While

the literature employs a number of different parametric assumptions for estimating discrete

choice models of recreation demand, I focus on a particularly common set of assumptions:

the multinomial logit model. It is important to note that the challenges discussed in Section

3 generalize to many of the other common discrete choice models in the literature.

The basic random utility maximization hypothesis assumes that individuals select the

alternative yielding the highest level of utility when facing a well-defined choice set (McFad-

den, 1974). Let uijt denote the conditional utility received by individual i ∈ {1, . . . , N} when

selecting alternative j ∈ {1, . . . , J} on choice occasion t ∈ {1, . . . , T}. The individual selects
alternative j if and only if uijt > uikt, ∀k ̸= j. Let yijt = 1 if individual chooses alternative j
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and yijt = 0 otherwise, i.e.

yijt =

{
1 uijt > uikt,∀k ̸= j

0 otherwise

Since it is not possible to observe all factors influencing individual site selection decisions,

conditional utility is parameterized as a function of a vector of observable individual- and

alternative-specific attributes and a residual term which is known to the individual when

making their decision but unobserved by the econometrician. In particular, individual i’s

conditional utility from visiting recreation site j on choice occasion t is as follows:

uijt = x′
jtβ − cijtα + ξj︸ ︷︷ ︸

≡vijt

+εijt (1)

where x′
jt is a vector of observable site- and choice occasion-specific attributes; cijt is an

idiosyncratic measure of travel cost; ξj is an alternative-specific constant that captures av-

erage valuations of time-invariant, site-specific attributes; vijt collects the observable com-

ponents of utility; and εijt is an idiosyncratic, unobserved shock to preferences. I include

the alternative-specific constant, ξj, in line with best practices in the literature to account

for unobservable site attributes (Lupi et al., 2020).1 For expositional clarity and ease of

notation, the target parameters θ′ =
[
β′ α

]
in (1) do not vary across either observable or

unobservable attributes in the population.2

The standard approach to fully specify the model given by (1) is to make an assumption

on the distribution of the idiosyncratic shocks to preferences, i.e., the residual term εijt.

While there are several different distributional assumptions made in the recreation demand

literature, the most common of these is that εijt is distributed Type 1 Extreme Value (T1EV)

across the population, and is independent and identically distributed (iid) across individuals

and sites, which corresponds to the logit model. This has a number of desirable proper-

ties, including the fact that each individual’s resulting choice probability for the different

alternatives has a simple, closed-form solution.

Taking this common assumption of an extreme-value error term, εijt ∼ T1EV, it is

1It is possible to include the alternative-specific constant, ξj , and still obtain estimates of consumers’
valuation of invariant, site-specific observable by projecting the observable factors of interest on estimates
of these site fixed effects (Murdock, 2006).

2It is not uncommon in the literature to allow the coefficients on the additive, observable components of
utility, θ, to vary across individuals in the population based on observable attributes, unobservable attributes,
or both. Several classes of discrete choice models permit such heterogeneity, including the mixed or random
parameters logit. Though I do not allow for this heterogeneity in the exposition and results of this paper, it
is important to note that the biases and corresponding control function approach outlined herein extend to
these richer classes of models as shown by Petrin and Train (2010) and others.
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possible to specify the closed-form choice probabilities in this model. In particular, the

probability that individual i chooses site j on choice occasion t is:

pijt(θ) = Pr(j ∈ argmax
k∈C

uikt) =
exp(vijt(θ))∑
k∈C exp(vikt(θ))

(2)

where C = {1, ..., J} is the choice set. Estimation proceeds via maximum likelihood, where

the log likelihood is defined as:

L(θ) =
N∑
i=1

T∑
t=1

J∑
j=1

yijt log(pijt(θ)) (3)

where likelihood contributions are summed across individuals i ∈ {1, . . . , N}, choice occa-

sions t ∈ {1, . . . , T}, and alternatives j ∈ {1, . . . , J}. The maximum likelihood estimate is

the value of θ that maximizes (3).

Having recovered estimates of the model parameters, θ, it is possible to construct es-

timates of willingness-to-pay for observable attributes, other measures of marginal rates

of substitution, or changes in welfare associated with different attribute levels.3 Often in

recreation demand model applications, we are interested in constructing a measure of con-

sumers’ marginal willingness-to-pay for a given observable attribute, such as a measure of

environmental quality, qjt:

WTP q(θ) =
βq

α

Another statistic that is often of interest in recreation demand applications is the expected

change in consumer surplus resulting from a change in a given environmental quality, say

from q0jt to q1jt ∀j, t, which based on the parametric assumptions above is given by:

∆E[CSit(θ)] =
1

α

[∑
j

exp
(
v1ijt(θ)

)
−

∑
j

exp
(
v0ijt(θ)

)]

where v1ijt and v0ijt are the observable components of individual i’s utility on occasion t

calculated for q1jt and q0jt, respectively. It is possible to construct empirical estimates of these

statistics from observable data and parameter estimates from (3).

3It is important to note that a feature common to all models of discrete choice is that the scale of utility
is irrelevant: the alternative with the highest utility is the same regardless of the overall scale of utility
(Train, 2009). This means that model parameters are only identified from observed choices and parametric
assumptions up to an arbitrary shift in the scale of utility. Since the scale of utility does not affect the ratio
of any two model parameter estimates, measures of willingness-to-pay and other ratios of parameters are
identified from observed choices and parametric assumptions.
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3 Challenges with Travel Cost in The Standard Model

In this section, I present two challenges with the implementation of the standard model

outlined in Section 2: non-random sorting on preferences for outdoor recreation—leading to

selection into travel costs—and measurement error in travel costs and the resulting impacts

on applications of standard models of recreation demand.

3.1 Selection into Travel Costs

If households factor preferences for certain recreation or environmental amenities into res-

idence location decisions, this can result in non-random, non-zero correlation between ob-

served travel costs and preferences for a specific site. For example, households with a partic-

ularly strong idiosyncratic preference for a specific site and its attributes may choose to live

closer to that site, all else equal. As Parsons (1991) suggests, this type of sorting towards

desirable recreation sites could produce a negative correlation between observed travel cost

and the likelihood of visiting a site, the quantity of visits to a site, or some other measure

of demand for a site.

Households with a particularly strong idiosyncratic preference for a specific site and

its attributes may also systematically choose to live further from that site. This form of

non-random sorting would result in a positive correlation between observed travel cost and

demand for a given site. Such a pattern might emerge in the data if unobserved, idiosyncratic

preferences for a site are correlated with another unobserved factor that drives sorting away

from desirable sites. For instance, a strong idiosyncratic preference for a remote, pristine

recreation site may be correlated with household income, which itself may be associated with

a greater propensity to reside in urban centers far from high value recreation sites.

It is important to note that any non-random spatial distribution of residences and recre-

ation sites can lead to biased inferences under the standard approach. I demonstrate this

in a stylized model in Figure 1. For each form of sorting the analyst observes realized vari-

ation in levels of recreation demand at different prices: (P1, Q1), (P2, Q2), and (P3, Q3). In

both forms of sorting, consumers at (P1, Q1) have the highest unobserved preference for

recreation whereas consumers at (P3, Q3) have the lowest. Ignoring non-random sorting, the

analyst recovers estimates of household recreation demand, dest. As I show in Figure 1a,

when households move close to recreation sites for which they have high idiosyncratic pref-

erences, the analyst overestimates households’ responsiveness to recreation costs, mistaking

outward shifts in household demand curves for movement along the recreation price gradi-

ent. Analogously, when households move far from recreation sites for which they have high

idiosyncratic preferences, the analyst underestimates households’ responsiveness to recre-
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Figure 1. Biased Recreation Demand Estimates with Two Sorting Patterns

(a) Sorting towards Recreation Sites

Price

Quantity

dest

dact1dact2dact3

P1

P2

P3

Q1Q2Q3

(b) Sorting away from Recreation Sites

Price

Quantity

dest

dact3

dact2

dact1

P3

P2

P1

Q3Q2Q1

Notes: This figure shows two stylized models of the bias introduced by non-random sorting of households
on preferences for outdoor recreation. The left panel describes a scenario in which households sort
towards recreation sites: households with higher preferences for a particular site’s amenities choose to
reside closer to that site. The right panel describes a scenario in which households sort away from
recreation sites: households with higher preferences for a particular site’s amenities choose to reside
further from that site. In each scenario, the analyst observes (P1, Q1), (P2, Q2), and (P3, Q3) and
estimates the demand curve dest. The demand curves dact1 , dact2 , and dact3 describe the actual demand
curves of households observed at each point in the data consistent with each model of residence choice.
Consumers with demand curve dact1 have the highest idiosyncratic preference for recreation, whereas
consumers with demand curve dact3 have the lowest: consumers represented by dact1 demand higher levels
of recreation at all price levels compared with consumers represented by dact2 and dact3

ation costs as shown in Figure 1b, mistaking inward shifts in household demand curves for

movement along the recreation price gradient.

To be more precise about the nature of the endogeneity problem posed by non-random

selection into travel costs, I return to the baseline model given by (1). Re-writing the

residual term as the sum of two components gives the following specification of household

i’s conditional utility from visiting recreation site j on choice occasion t:

uijt = vijt(θ) + ξijt + ε̃ijt︸ ︷︷ ︸
≡εijt

(4)

where ξijt is an unobserved, idiosyncratic preference that is correlated with travel cost and

ε̃ijt is an unobserved, independent shock to preferences. The endogeneity problem arises due

to the fact that travel cost is given by

cijt = w(zijt; γ) + f(ξijt) + µijt (5)

8



where zijt are some observed instruments that affect travel cost, but not recreation site

choice; w(·) is a function with parameters γ that relates zijt and travel cost cijt; f(·) is

some unknown function that relates the idiosyncratic recreation site preference, ξijt to travel

cost cijt; and µijt is a mean-zero, idiosyncratic shock to travel costs. In the standard model

outlined in Section 2, I assume that ξijt+ε̃ijt = εijt ∼ T1EV, thereby assuming that εijt ⊥ cijt

which implicitly ignores the fact that ξijt ̸⊥ cijt.

I demonstrate the bias introduced by non-random selection into travel costs in the stan-

dard recreation demand model via a set of simulated data generating processes. I specify

different data generating processes based on the model of endogenous travel costs given by

(4) and (5), simulate a large number of choice data from each data generating process, and

apply the standard recreation demand model of (1) to estimate model parameters based on

each simulated choice dataset. Having knowledge of the data generating processes allows me

to directly compare the resulting distributions of model parameter estimates with the true

values of the target parameters.

For three distinct simulated data generating processes, I assume that individual i’s indi-

rect utility from and travel cost for alternative j follows:

uij = 1.0xij − 2.0cij + 1.0xj + ξij + ε̃ij

cij = 5.0 + 1.0zij + ρsimξij + µij

ξij = 0.5ξ̃ij + 0.5ξ̃g(i)

(6)

where
xij ∼ U(−1.0, 1.0) xj ∼ U(−1.0, 1.0) zij ∼ U(−1.0, 1.0)

ξ̃ij, ξ̃g(i) ∼ N (0.0, 1.0) ε̃ij ∼ Gumbel(0.0, 1.0) µij ∼ N (0.0, 1.0)
(7)

Note that the idiosyncratic unobservable, ξij, is the sum of two independent unobservables,

an idiosyncratic component, ξ̃ij, and a component that is common across groups, g(i), of

individuals, ξ̃g(i). This allows for non-trivial correlation in unobservable preferences across

groups of similar individuals, g(i).4 For the three simulations, I make the following assump-

tion about ρsim to fully specify the data generating process of (6) and (7):

Simulation 1: ρ1 = 0.0 (No endogeneity)
Simulation 2: ρ2 = −1.0 (Sorting towards sites)
Simulation 3: ρ3 = 1.0 (Sorting away from sites)

I simulate 1000 unique choice datasets for each of the three above data generating pro-

cesses. Each dataset consists of 10,000 individuals from 10 different origin groups, each of

4I explore the robustness of different estimators to different assumptions on the degree of within-group
correlation in the unobservable preference, ξij , in Section 4.4.
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Figure 2. Bias from Non-random Sorting

Notes: This figure plots example relationships between households’ unobserved, idiosyncratic prefer-
ence (ξijt) and travel cost from a single simulated dataset (top) as well as the distribution of estimated
willingness-to-pay (WTP) across 1000 simulated datasets (bottom). The figure shows example rela-
tionships and WTP estimates for three assumed data generating processes: one where the idiosyncratic
preference and travel cost are independent (left); one corresponding to a model of household sorting
towards desirable recreation sites, where the idiosyncratic preference and travel cost are negatively cor-
related (center); and one corresponding to a model of household sorting away from desirable recreation
sites, where the idiosyncratic preference and travel costs are positively correlated (right). The true value
of the the willingness-to-pay statistic is shown as the vertical black line in the bottom panel. The full
data generating process for each of simulations 1 to 3 are described in Section 3.1 and 3.2
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whom chooses between 20 sites. The top panel of Figure 2 plots the empirical relationship

between the idiosyncratic, unobserved preference (ξij) and the idiosyncratic, observed cost

variable (cij) for an example simulated choice dataset for each data generating process.

Having simulated 1000 choice datasets for each of the three simulations, I then make the

standard assumption that (ξij + ε̃ij) ∼T1EV—i.e., ignore the data generating process for

travel costs. I estimate the parameters for each simulated dataset via a multinomial logit

model with alternative-specific constants, thereby generating distributions of parameter esti-

mates from the standard model of recreation demand for each data generating process. Note

that since the scale of indirect utility is in general not identified in discrete choice models,

I compare estimates of the marginal rate of substitution between xij and cij—a measure

of willingness-to-pay for xij—when evaluating the relative performance of the standard as-

sumption of travel cost exogeneity across the three distinct data generating processes.5

The bottom panel of Figure 2 plots the empirical distributions of willingness-to-pay

estimates from the standard logit estimator across the three sets of simulations. With no

correlation between the mean-zero idiosyncratic preference (ξijt) and travel cost (cijt) in Sim-

ulation 1, the standard estimator performs well, with an average willingness-to-pay across

all 1000 simulated samples equal to the true value of −0.5. Introducing non-zero correla-

tions between the unobserved preference and travel cost results in poor coverage of the true

target statistic: the average willingness-to-pay across all 1000 simulated samples is −0.46 in

Simulation 2 and −0.55 in Simulation 3. Moreover, I can reject the null hypothesis that the

willingness-to-pay estimates equal the true value of −0.5, with t-statistics of 3.40 and −3.71

for Simulations 2 and 3, respectively.

The pattern of the bias in the standard logit model parameter estimates for Simulations

2 and 3 matches the predictions of Figure 1. With sorting towards recreation sites, I over-

estimate households’ responsiveness to recreation costs—i.e., the parameter α on travel cost

in indirect utility. As I can see from the simulation results in Figure 2, this leads to an

underestimation of the (magnitude of the) willingness-to-pay statistic, since this statistic

involves dividing by the travel cost parameter. Similarly, with sorting away from recreation

sites, I underestimate households’ responsiveness to recreation costs. As is clear from Figure

2, this results in an overestimation of the (magnitude of the) willingness-to-pay statistic.

Thus, regardless of the direction of the relationship between unobserved, idiosyncratic pref-

erences and travel cost, the phenomenon of non-random sorting in these contexts presents a

substantial challenge to standard discrete choice models of recreation demand.

5See Train (2009) and the discussion in Section 2.
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3.2 Measurement Error in Travel Cost

I turn now to a second issue in standard applications of recreation demand estimation,

namely measurement error in travel costs. The basic logic of the recreation demand model

assumes that the cost of travel to a site is the price of consuming that site’s amenities. The

cost of travel is inclusive of both the direct monetary costs of site visitation, including fuel,

tolls, vehicle depreciation, or airfare, as well as the value of travel time, which is the value

of foregone wages directly associated with travel. Unfortunately, analysts rarely have access

to the true cost of travel associated with realized trips, let alone all trips in their choice set.

As a result, analysts must use information on residence location and the location of sites

in households’ choice sets in combination with a set of assumptions to construct estimates

of travel costs. While there is a well-defined set of best practices for doing so—see Lupi

et al. (2020)—this approach to estimating travel costs can clearly result in both classical

and non-classical (i.e., non-random) measurement error.

Since driving is the main transport mode in recreation demand, analysts must estimate

driving distances between households and recreation sites, then convert them into monetary

values using marginal fuel costs, tolls, and vehicle depreciation. A common method is to rely

on average driving costs from sources like the American Automobile Association (Lupi et al.,

2020). However, this likely introduces classical (mean-zero) measurement error due to cost

heterogeneity. Similarly, it is often difficult for analysts to observe households’ opportunity

costs of travel time. As a result, analysts often estimate travel time costs using a fixed

proportion (typically one-third to one-half) of average local wages, which, combined with

assumptions about travel speed, can also lead to measurement error (Lupi et al., 2020)

Additional features of the travel cost construction process can lead to non-classical mea-

surement error. A practical challenge in these settings is the assumed travel mode: as the

distance to different sites in a household’s choice set increases, so too does the probability

that they choose to fly to a given site rather than drive. Though there are several notewor-

thy exceptions, including English et al. (2018), most recreation demand applications either

explicitly or implicitly assume that households only drive to sites in their choice set, which

can result in overestimation of the true cost of travel, particularly as the linear distance

between a site and a household increases. By not accounting for potential substitution away

from driving as distance increases, conventional applications of this method can generate

measurement error that explicitly scales with distance, i.e., non-classical measurement error.

Both classical and non-classical measurement error can lead to biased inferences from

standard discrete choice models of recreation demand: similar to linear models, measurement

error in travel costs leads to the familiar attenuation or regression dilution problem which

leads to inconsistent, underestimation of model parameters. To be more precise about the
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Figure 3. Bias from Measurement Error in Travel Cost

Notes: This figure plots example relationships between households’ true and observable travel costs
from a single simulated dataset (top) as well as the distribution of estimated willingness-to-pay (WTP)
across 1000 simulated datasets (bottom). The figure shows example relationships and WTP estimates
for three assumed data generating processes: one where there is additive, mean-zero measurement error
in travel costs (left); one where measurement error is increasing in travel distance (center); and one
where there is both additive, mean-zero measurement error in travel costs as well as non-random sorting
towards desirable recreation sites, where the idiosyncratic preference and true, unobserved travel costs
are negatively correlated (right). The true value of the the willingness-to-pay statistic is shown as the
vertical black line in the bottom panel. The full data generating process for each of simulations 4 to 6
are described in Section 3.1.
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nature of the measurement error problem in this context, I return to the baseline model

outlined in Section 2. Setting aside the potential for non-random sorting by households,

assume that the analyst evaluates the following model of household i’s conditional utility

from visiting recreation site j on choice occasion t:

uijt = x′
jtβ − ĉijtα + ξj + ω̃ijt (8)

where ω̃ijt is an unobserved, idiosyncratic, and independent shock to preferences and ĉijt is

the estimated or observed travel cost for household i to visit site j at time t such that

ĉijt = cijt + g(cijt) + ηijt (9)

Thus, the travel cost that the analyst observes is equal to the sum of the true travel cost, cijt;

some function g(·) of the true travel cost; and some mean-zero shock to the true travel cost,

ηijt. Plugging (9) into (8) shows a correspondence between the measurement error problem

and the non-random travel cost issue outlined in Section 3.1:

uijt = vijt(θ) + ζijt + ω̃ijt︸ ︷︷ ︸
≡ωijt

(10)

where I define ζijt = −α(g(cijt) + ηijt) as the unobserved component of household utility

that is correlated with both household utility and observed travel costs, ĉijt. The symmetry

between the non-random sorting and measurement error issues is evident in (4) and (10).

Estimating the standard model of Section 2 while treating observed travel costs, ĉijt, as

the true travel costs implicitly assumes that ζijt + ω̃ijt = ωijt ∼ T1EV, thereby assuming

that ωijt ⊥ ĉijt which ignores the fact that ζijt ̸⊥ ĉijt. Kao and Schnell (1987) derive the

asymptotic properties of a multinomial logit model with measurement error and show that

the standard parameter estimates do not converge to the true values.

I demonstrate the bias from different forms of measurement error in the recreation de-

mand context by adapting the data generating process of (6) and (7) to include imperfectly

observed travel cost. I specify three distinct data generating processes to examine the bias

from measurement error: in the first (Simulation 4), I ignore potential correlation between

idiosyncratic preferences and true travel costs by setting ρ4 = 0.0 and assume that the

analyst observes the following travel cost:

Simulation 4: ĉijt = cijt + ηijt (Classical measurement error)

where ηijt ∼ N (0.0, 1.0) and which corresponds to classical measurement error in travel
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costs. In the second measurement error data generating process (Simulation 5), I again

ignore potential correlation between preferences and true travel costs by setting ρ5 = 0.0

and assume that the analyst observes the following travel cost:

Simulation 5: ĉijt = cijt(1 + ηijt) (Non-classical measurement error)

where again ηijt ∼ N (0.0, 1.0) and which corresponds to non-classical measurement error in

travel costs. In the third and final measurement error data generating process (Simulation

6), I allow for both non-random selection into true travel costs and measurement error in

observed travel costs. In particular, I set ρ6 = −1.0 and assume that there is classical

measurement error of the same classical form as in Simulation 4:

Simulation 6: ĉijt = cijt + ηijt (Classical measurement error)

where again ηijt ∼ N (0.0, 1.0).

As with the simulations in Section 3.1, I generate 1000 unique choice datasets for each

of the three data generating processes defined by Simulations 4 through 6, including both

true and observed travel costs. Once again, each dataset consists of 10,000 individuals from

10 different origin groups choosing between 20 alternative sites. The top panel of Figure 3

plots the empirical relationship between true travel costs and travel costs observed by the

analyst for an example simulated choice dataset for each simulation.

Having generated 1000 choice datasets for each of the three simulations, I again make

the standard assumption on the distribution of the unobservable residual term that ignores

measurement error in travel costs. I estimate the parameters for each simulated dataset via a

multinomial logit model with alternative-specific constants, thereby generating distributions

of parameter estimates from the standard model of recreation demand for each data gener-

ating process. Importantly, however, I now treat the simulated observed travel costs, ĉijt, as

the true travel costs when estimating the parameters of the model. I then compare estimates

of the marginal rate of substitution between xij and cij when evaluating the performance of

the standard multinomial logit estimator in the presence of measurement error.

The bottom panel of Figure 3 plots the distributions of willingness-to-pay estimates from

the standard logit estimator across the three different measurement error data generating

processes. The presence of measurement error results in poor coverage of the true target

statistic: across all three sets of simulations, average estimates of the willingness-to-pay

measure are between −0.54 and −0.60. This is consistent with measurement error producing

attenuation in estimates of the travel cost parameter: a smaller-in-magnitude travel cost

parameter estimate results in a larger-in-magnitude willingness-to-pay measure. I can reject
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the null hypothesis that the distribution of willingness-to-pay estimates cover the true value

of −0.5 for Simulations 4, 5, and 6 with t-statistics of −6.84, −6.62, and −2.50, respectively.

4 Solution: An Instrumental Variables Estimator

While the challenges of non-random sorting on preferences for outdoor recreation and mea-

surement error in travel costs can bias estimates from standard discrete choice models of

recreation demand, a relatively simple class of alternative estimators can circumvent these

issues. This section presents an instrumental variables estimator that is analogous to two-

stage least squares in the nonlinear context of standard discrete choice models. The esti-

mator, referred to in the literature as a two-stage control function approach, is relatively

straightforward to implement and, with some simple additional assumptions outperforms

the baseline models in numerical simulations.

4.1 Control Function Approach and Endogenous Travel Cost

Define ϵijt = f(ξijt)+µijt as the sum of the unobservable components in the data generating

process for travel costs, cijt, defined by (5). Based on the model of indirect utility and travel

costs outlined by (4) and (5), there exists a non-zero correlation between the unobserved,

idiosyncratic preference, ξijt, and this unobserved component of travel cost, ϵijt. Assuming

for now that it is possible to observe ϵijt, I can decompose the unobservable preference term,

ξijt, into its mean conditional on ϵijt and deviations around this mean:

ξijt = E[ξijt|ϵijt] + ξ̃ijt (11)

The conditional expectation in (11) is a function of ϵijt and can be approximated using a

control function:

ξijt = CF (ϵijt;λ) + ξ̃ijt (12)

where λ parameterizes the function CF (·). While (12) allows for many possible parametric

assumptions, the simplest assumption is that

CF (ϵijt;λ) = λϵijt (13)

Substituting (12) and (13) into (4) gives:

uijt = vijt(θ) + λϵijt + ξ̃ijt + ε̃ijt (14)
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where by construction both ξ̃ijt and ε̃ijt are idiosyncratic, unobserved, and independent.

It is possible to take the model implied by (14) to the data to recover unbiased estimates

of the target parameters, θ. Doing so requires a set of assumptions about the residual terms

ξ̃ijt and ε̃ijt as well as access to a set of valid instruments, zijt, for travel cost. While a

number of different assumptions on the structure of the unobserved terms ξ̃ijt and ε̃ijt are

plausible, the simplest is to treat each as an error component and assume that their sum is

independently and identically distributed T1EV, i.e., (ξ̃ijt + ε̃ijt) ∼T1EV. This assumption

then allows me to estimate (14) as a logit model with an additional observable variable, ϵijt,

and parameter, λ. For a discussion of additional possible assumptions on the distribution of

these error terms, see Train (2009) and Petrin and Train (2010).

Armed with an assumption on the distribution of the terms ξ̃ijt and ε̃ijt, it is possible

to specify an estimator from (14) that identifies the true target parameters, θ. However,

this requires consistent estimates of the residual term ϵijt from the first stage for travel costs

(5) which is possible with a valid travel cost instrument, zijt. In particular, the travel cost

instrument must satisfy the following relatively standard conditions: instrument relevance,

i.e., Cov(cijt, zijt) ̸= 0, and instrument exogeneity, i.e., Cov(zijt, ξijt) = 0. These assumptions

are common to other instrumental variables estimators (Angrist and Krueger, 2001).

With access to a valid travel cost instrument, zijt, it is possible to implement a two-stage

control function estimator that identifies the true parameters as follows:

1. First (5) is estimated: this is a regression with the endogenous travel cost variable as

the dependent variable and the exogenous instrument, zijt, as the explanatory vari-

able. While it is possible to flexibly specify the functional form of w(zijt, γ), a simple

assumption is that zijt enters linearly such that the instrument enters (5) additively

and the parameters γ are recovered by ordinary least squares. The residuals from this

first stage regression provide estimates of ϵijt:

ϵ̂ijt = cijt − w(zijt; γ̂)

2. In the second step, a discrete choice model—such as a multinomial logit—is estimated

with the first stage residual, ϵ̂ijt entering as an additional term. Estimation follows the

same likelihood routine as that for the baseline model described in Section 2.

Thus, with a set of parametric and distributional assumptions on the nature of the correla-

tion between travel cost and the unobserved, idiosyncratic preference term, it is possible to

account for the endogeneity problem and recover unbiased parameter estimates. Moreover,

while the linear assumption on the expectation of ξijt conditional on ϵijt may appear strong,
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it is possible in practice to allow for more flexible specifications of the control function (12)

at minimal additional computational cost.

It is important to note that inference is non-trivial in the context of this relatively simple

two-stage estimator. A general feature of estimation in multiple stages is that noise from

earlier stages of estimation enters later stages, which means that the covariance matrix for

the final estimates must reflect this additional source of error. Karaca-Mandic and Train

(2003) and Petrin and Train (2010) derive the asymptotic covariance matrix of the second

stage estimates in a two-stage control function estimator of a multinomial logit model and

demonstrate the importance of accounting for this additional source of error in an empirical

setting. It is also possible to adjust the second stage standard errors by bootstrapping the

full two-stage procedure (Petrin and Train, 2010).

4.2 Control Function Approach and Measurement Error

It is relatively trivial to adapt the exposition in Section 4.1 to the case of measurement error

in travel costs. If I ignore potential travel cost endogeneity and assume that true travel costs

follow an analogous data generating process as (5), i.e.,

cijt = w(zijt; γ) + µijt

then it is possible to express observed travel costs (9) as

ĉijt = w(zijt; γ) + h(ζijt) + µijt︸ ︷︷ ︸
≡eijt

(15)

where once again zijt are some observed instruments that affect travel cost, but not recreation

site choice; w(·) is a function with parameters γ that relates zijt and travel cost cijt; h(·) is
some unknown function that relates the correlated unobservable from (10), ζijt, to observed

travel cost ĉijt; and µijt is a mean-zero, idiosyncratic shock to travel costs.6 Assuming that it

is possible to observe eijt, which collects the unobservable terms in (15), I can specify a control

function for the unobservable term, ζijt. In particular, I can decompose this unobservable

error term, ζijt into its mean conditional on eijt and an independent component:

ζijt = E[ζijt|eijt] + ζ̃ijt (16)

6Note that I defined ζijt as ζijt = −α(g(cijt) + ηijt) in (10).
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The conditional expectation in (16) is itself a function of eijt and can be approximated using

a control function:

ζijt = CF (eijt; ν) + ζ̃ijt (17)

where ν parameterizes the function CF (·). Once again, the simplest assumption is that

CF (eijt; ν) = νeijt (18)

Substituting (9), (15), (17), and (18) into (8) gives:

uijt = X ′
ijtβ − ĉijtα + ξj︸ ︷︷ ︸

vijt(ĉijt;θ)

+νeijt + ζ̃ijt + ω̃ijt (19)

where by construction, both ζ̃ijt and ω̃ijt are idiosyncratic, unobserved, and independent.

This final equation has an analogous form to (14) where the analyst now uses the observed

travel cost ĉijt in the observable component of utility, vijt(·).
Making an analogous set of parametric and distributional assumptions on the nature of

the correlation between observed and true travel costs and assuming the analyst observes

a valid instrument for travel cost, zijt, (19) shows that is possible to account for the mea-

surement error problem and recover unbiased parameter estimates. Similar to the solution

that I present in Section 4.1, implementing this solution requires estimation in two steps: in

the first stage, observed travel costs are regressed on a valid cost instrument which gener-

ates estimates of the residual term, êijt. In the second stage, these estimates are included

in a standard discrete choice model of recreation demand, such as the multinomial logit or

random parameters logit.

4.3 Performance of the Control Function Approach

I implement the two-stage control function estimator using the simulated choice data from

Simulations 1 through 6 from Section 3. Figure 4 compares the distribution of estimated

willingness-to-pay statistics obtained from the standard logit estimator and the two-stage

control function estimator for all six simulations. Apart from Simulation 1, which has no

correlation between unobserved preferences and travel costs and no measurement error, the

estimates from the two-stage control function estimator outperform the baseline logit esti-

mates. As shown in Table 1, the control function estimator reduces bias in willingness-to-pay

estimates by one to two orders of magnitude in the case of Simulations 2 and 3.

The control function also has better coverage of the true willingness-to-pay statistic in the

case of the measurement error simulations. In Simulations 4 and 5, which assume additive,
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Figure 4. Performance of Two-stage Control Function Estimator

Notes: This figure plots the distribution of estimated willingness-to-pay (WTP) using the baseline
multinomial logit estimator and two-stage control function estimator across 1000 simulated datasets for
each of the 6 simulations described in Section 3. Simulations 1 through 3 assume different non-random
sorting data generating processes: one where the idiosyncratic preference and travel cost are independent
(left); one corresponding to a model of household sorting towards desirable recreation sites, where the
idiosyncratic preference and travel cost are negatively correlated (center); and one corresponding to
a model of household sorting away from desirable recreation sites, where the idiosyncratic preference
and travel costs are positively correlated (right). Simulations 4 through 6 assume different measurement
error data generating processes: one where there is additive, mean-zero measurement error in travel costs
(left); one where measurement error is increasing in travel distance (center); and one where there is both
additive, mean-zero measurement error in travel costs as well as non-random sorting towards desirable
recreation sites, where the idiosyncratic preference and true, unobserved travel costs are negatively
correlated (right). The true value of the the willingness-to-pay statistic is shown as a vertical black line.

independent measurement error and non-linear measurement error, respectively, the control

function estimator greatly reduces the magnitude of this bias, again by several orders of mag-

nitude. The performance of the control function estimator is attenuated with non-classical

measurement error in Simulation 5, though the estimator still substantially outperforms the

standard logit estimator. I am able to reject the null hypothesis of equivalence between the
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Table 1. Willingness-to-pay Estimates for Simulated Choice Data

Baseline Estimator Control Function

Mean Bias MSE t-stat Mean Bias MSE t-stat

Baseline Simulation
Simulation 1 -0.500 -0.000 0.000 -0.004 -0.500 0.000 0.000 0.027

Non-random Sorting Simulations
Simulation 2 -0.461 0.039 0.002 3.395 -0.500 -0.000 0.000 -0.015
Simulation 3 -0.546 -0.046 0.002 -3.709 -0.500 0.000 0.000 0.014

Measurement Error Simulations
Simulation 4 -0.597 -0.097 0.010 -6.844 -0.498 0.002 0.000 0.135
Simulation 5 -0.599 -0.099 0.010 -6.619 -0.466 0.034 0.001 2.713
Simulation 6 -0.535 -0.035 0.001 -2.501 -0.499 0.001 0.000 0.063

Notes: This table reports summary statistics for willingness-to-pay estimates using the baseline
multinomial logit estimator and two-stage control function estimator across 1000 simulated datasets
for each of the 6 simulations described in Section 3. The table reports the average WTP estimate,
average bias, and mean squared error (MSE) across the 1000 simulations as well as the t-statistic
for a two-sided test of the null hypothesis that the simulated WTP values equal the true value.
Simulations 1 through 3 assume different non-random sorting data generating processes: one where
the idiosyncratic preference and travel cost are independent (Simulation 1); one corresponding to a
model of household sorting towards desirable recreation sites, where the idiosyncratic preference and
travel cost are negatively correlated (Simulation 2); and one corresponding to a model of household
sorting away from desirable recreation sites, where the idiosyncratic preference and travel costs are
positively correlated (Simulation 3). Simulations 4 through 6 assume different measurement error
data generating processes: one where there is additive, mean-zero measurement error in travel costs
(Simulation 4); one where measurement error is increasing in travel distance (Simulation 5); and one
where there is both additive, mean-zero measurement error in travel costs as well as non-random
sorting towards desirable recreation sites, where the idiosyncratic preference and true, unobserved
travel costs are negatively correlated (Simulation 6).

the willingness-to-pay estimates from the control function estimator in Simulation 5 and true

value based on the t-statistic reported in Table 1 of 2.71. The performance of the two-stage

control function estimator remains strong with both non-random sorting and measurement

error in travel costs as shown in the results for Simulation 6 in Figure 4.

Taken together, the results shown in Figure 4 and Table 1 provide strong support in

favor of the two-stage control function approach to address a range of potential biases in

conventional recreation demand models. Regardless of the source or direction of the bias

in practice, this alternative estimator delivers relative performance improvements over con-

ventional estimators of discrete choice models of recreation demand that ignore potential

practical issues with travel costs. These simulation results should encourage analysts and

practitioners to implement this relatively simple two-stage correction to ensure valid infer-

ences from recreation demand models in empirical settings.
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4.4 Alternatives to the Control Function Approach

An existing best practice for implementing recreation demand models is to include site-

or alternative-specific constants (Lupi et al., 2020). Murdock (2006) motivates the use of

alternative-specific constants in recreation demand models as a means of addressing a price

endogeneity due to the non-uniform distribution of residences and recreation locations. While

the use of alternative-specific constants is indeed important to account for site-specific, unob-

servable factors influencing recreation decisions, it does not mitigate the particular source of

endogeneity on which I focus: the non-random sorting of individuals based on unobservable

preferences for recreation arises over both individual decision makers and sites rather than

just sites alone. Indeed, the biased willingness-to-pay estimates reported in Figures 2 and 3

come from multinomial logit estimators that include alternative-specific constants.

A less common, but perhaps promising alternative to the control function approach

relies on the use of recreator origin fixed effects. For example, Dundas and von Haefen

(2020) use a spatially-broad origin fixed effect in their model of fishing site demand with a

similar residence choice decision in mind. If individuals make residence location decisions

in part based on their idiosyncratic preferences for specific recreation sites, then individuals

residing in proximity to one another are likely to have correlated unobservable preferences

for recreation. A set of fixed effects based on an aggregate geographic area linking plausibly

similar individuals may therefore help directly control for—albeit in a course manner—the

unobservable, idiosyncratic preference that gives rise to the motivating endogeneity problem.

I test the performance of this alternative approach across the six simulations discussed

above by adding origin fixed effects to the baseline estimator. The data generating process

for each simulation described by (6) and (7) assumes a degree of correlation in unobservable

preferences by making ξij a function of an idiosyncratic component and a group-specific

component. This in turn ensures that individuals from the same origin group face a similar

set of travel costs across alternatives—i.e., are located in proximity to one another—given

the assumed data generating process for costs.

I report the full results from this alternative estimator with origin fixed effects alongside

those from the baseline and control function estimators in Table A1. Interestingly, the ap-

proach using origin fixed effects offers a minimal performance improvement over the baseline

estimator in the case of Simulations 2 and 3, and no performance improvement in the case

of Simulations 4, 5, and 6. I test whether this is sensitive to the strength of within-group

correlation in the unobservable preference term by running Simulation 2 with different values
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of ρξ in the following data generating process for ξij:

ξij = (1− ρξ)ξ̃ij + ρξ ξ̃g(i)

where higher values of ρξ ∈ [0, 1] imply a greater degree of within-group correlation in ξij. As

I show in Appendix Figure A1, while the control function estimator provides consistent esti-

mates of willingness-to-pay for any degree of within-group correlation, the origin fixed effect

approach only provides performance gains over the baseline estimator in the case of particu-

larly high levels of within-group correlation of the unobservable preference term. Varying the

number of groups in the data generating process for Simulation 2 while holding the strength

of the within-group correlation fixed has little impact on the relative performance of the

estimators as shown in Appendix Figure A2. Thus, while there are certainly cases in which

this alternative offers an improvement over the baseline of no correction, in settings where

non-random sorting or measurement error in travel costs are plausible concerns analysts can

more effectively reduce bias by implementing the two-stage control function approach.

4.5 Robustness of the Control Function

I examine the robustness of the control function approach along two dimensions which are

likely important in practice: functional form misspecification and weak instruments. As I

outline in Sections 4.1 and 4.2, implementing the control function approach requires making

an assumption on the functional form of the relationship between the first stage residual and

the correlated unobservable—i.e., the conditional expectations in (11) and (16). In practice,

I assume a linear control function. In constructing the simulated data generating processes,

I assume that costs are linear in the observed instrument and both costs and indirect utility

are linear in the unobservable preference term; however, it is possible in practice that there

are nonlinearities in these relationships, which may affect the performance of my assumption

of a linear control function.

I explore the robustness of this assumption by simulating versions of the Simulation 2 data

generating process with different forms of nonlinearity in either the unobservable preference

term or the observable instrument. Appendix Figure A3 plots the distribution of willingness-

to-pay estimates from the baseline and control function estimators when the unobservable

preference, ξij, enters one or both of travel costs and indirect utility as a nonlinear function.

I test both quadratic and exponential functional forms and find that regardless of the form

or location of the nonlinearity, the control function estimator has better coverage of the

true willingness-to-pay value than the baseline estimator. Note that in implementing the

control function across each of these alternative data generating processes, I maintain the
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assumption of a linear control function.

These results reveal a strength of the control function approach: it only requires an

assumption about the distribution of the unobservable preference conditional on the residual

from a first stage regression of costs on instruments, where the residual is itself an arbitrary

function of the unobservable preference term.7 Since a given conditional distribution can

imply many different joint distributions, the approach is sufficiently general to allow arbitrary

and distinct functional forms for the unobservable term in utility and cost and still recover

unbiased second stage estimates, assuming it is possible to obtain unbiased estimates of the

first stage residual (Train, 2009).

Appendix Figure A4 plots the distribution of willingness-to-pay from each estimator when

the observed instrument, zij, enters costs as a nonlinear function. Interestingly, the functional

form of the true relationship between costs and the observable instrument has a material

impact on the performance of the control function approach: despite offering better coverage

of the true willingness-to-pay statistic than the baseline estimator, the control function

estimates are now biased, with a mean absolute bias of 3.1% and 1.8% of the true value for

quadratic and exponential relationships between costs and the instrument, respectively. This

result is driven by the fact that the first stage regression no longer delivers unbiased estimates

of the structural first stage residual. This suggests that practitioners should think carefully

about the correct functional relationship between cost and their observable instruments when

implementing the control function approach.

A second challenge in empirical applications is the potential for weak instruments. A large

literature in econometrics documents that conventional approaches to instrumental variables

estimation and inference are unreliable in the presence of weak instruments—instruments

that are weakly correlated with endogenous regressors (Andrews et al., 2019; Stock et al.,

2002). I explore the robustness of the control function approach to weak instruments by

varying the strength of the observable instrument, zij, in the Simulation 2 data generating

process and comparing the performance of the baseline and control function estimators.

I report the results from this robustness check in Appendix Figure A5: perhaps unsurpris-

ingly, the control function estimator has far lower bias except for cases where the instrument

has little to no correlation with travel costs. Fortunately, the instrumental variables liter-

ature develops a rule-of-thumb cutoff for the F -statistic that tests joint nullity of excluded

instruments in the first stage regression that appears to also be helpful in the case of the

two-stage control function: at levels of instrument strength in Appendix Figure A5 for which

7The exposition in Sections 4.1 and 4.2 implicitly assumes such a conditional distribution by assuming
that I can decompose the unobservable into its mean conditional on the first stage residual and deviations
around this mean and then placing assumptions on the distribution of these components.
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the control function shows minimal bias, the first stage F -statistic exceeds the rule-of-thumb

cutoff of 10.0 (Stock et al., 2002), suggesting a similar heuristic can be applied in this setting.

Taken together, these results highlight the importance of the first stage regression in deter-

mining the performance of the control function approach. Valid instruments and unbiased

first stage estimates are necessary to deliver accurate results in the second stage.

5 Empirical Application: Deepwater Horizon Oil Spill

In this section, I apply the insights of the numerical simulations in Sections 3 and 4 to a

real-world empirical setting. I examine the performance of the two-stage control function

approach in the context of a recreation demand model that monetizes lost shoreline recreation

associated with the 2010 Deepwater Horizon (DWH) oil spill in the Gulf of Mexico. The

DWH spill, which occurred following the explosion and sinking of a drilling rig 50 miles off

the Louisiana coastline in April 2010, lasted 87 days and resulted in the release of 134 million

gallons of oil into the Gulf of Mexico, making it the largest oil spill in US history.

In response to the DWH spill, the National Oceanic and Atmospheric Administration

(NOAA) initiated a process of assessing the recreation-related welfare losses for the purposes

of pursuing compensation on the public’s behalf under the Oil Pollution Act of 1990. This 5-

year, multi-million dollar effort involved both primary data collection and recreation demand

modeling. English et al. (2018) summarize the main results from the recreation demand

modeling component of this project, which finds that the monetary losses from foregone

shoreline recreation following the DWH spill totaled $661 million. The recreation demand

model underlying English et al. (2018) is the primary focus of this section.

5.1 Empirical Setting and Data

The NOAA-led assessment of recreational damages from the DWH spill employed two pri-

mary data collection methods, including (1) infield surveys of on-site recreational activities

and (2) telephone surveys of adult heads-of-household in the continental US. The infield sur-

veys included 129,000 in-person interviews, 35,000 onsite counts, and nearly 500,000 aerial

photographs and were conducted over the three years beginning immediately after the DWH

spill. These infield surveys form the basis of estimates of lost user days due to the spill by

year, month, and area, which are described in detail by Tourangeau et al. (2017) and help

calibrate monetary losses resulting from the DWH spill as I describe below.

The second source of primary data—local and nationwide telephone surveys of adult

heads-of-household—form the basis of the choice dataset used to estimate a discrete choice

model of demand for recreation at Gulf Coast sites. These phone surveys, which were based
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Figure 5. Recreation Sites and The Distribution of Distance in English et al. (2018) Sample

(a) Location of Sites in Sample (b) Distance to Sites

Notes: Panel (a) maps the 83 aggregate shoreline sites included English et al. (2018)’s choice set.
Panel (b) plots the distribution of one-way driving distances between the full set of shoreline sites and
survey respondents’ residences separately for the local and nationwide surveys. The shoreline sites are
differentiated into four groups: Texas Sites, Northern Gulf Sites, Peninsula Sites, and South Atlantic
Sites. For the purposes of assessing monetary damages from lost recreational user days, English et al.
(2018) identify the Northern Gulf and Peninsula Sites as the affected sites in respondents’ choice set.

on samples of adults in the continental US, included 43,000 interviews conducted from 2012

to 2013 and collected information on any recent shoreline trips to coastal areas in Texas,

Louisiana, Mississippi, Alabama, Florida, and Georgia (henceforth, “study area”). The

surveys solicited the precise location of any recent shoreline recreation visits to the study

area. English et al. (2018) weight the phone survey data to represent the target population,

namely Gulf Coast recreational users that reside in the contiguous US.8

English et al. (2018) aggregate surveyed households’ visit locations into 83 distinct sites

that span roughly 2,300 miles of coastline from Texas to Georgia. Figure 5 shows the location

of these sites as well as the regional groupings that English et al. (2018) use to analyze the

impact of the DWH spill: Texas, Northern Gulf, Peninsula, and South Atlantic. Of the

83 total sites, the authors define the 54 sites in the Northern Gulf and Peninsula regions

as those adversely affected by the spill. These 83 aggregate sites represent the full choice

set available to respondents when English et al. (2018) construct the data that they use to

estimate a discrete choice model of demand for Gulf Coast recreation.

In order to calculate the travel cost associated with visiting the 83 aggregate sites in

8In particular, English et al. (2018) construct a set of weights that (1) account for sampling probabilities
in populated areas; (2) correct for non-response by selected geographies; (3) correct for the intentional
oversampling of Gulf Coast recreationists based on the mail screener; (4) post-stratify to match the number
of households in aggregate geographies included in the target, continental US population; (5) adjust for
the number of residents in respondents’ household; and (6) re-weight for aggregate observable demographic
characteristics. For additional information see English et al. (2018).
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respondents’ choice set, English et al. (2018) follow best practices in the recreation demand

literature while also making several noteworthy innovations on existing methods. In partic-

ular, recognizing that a non-trivial number of respondents likely chose to fly to their Gulf

Coast destination given the geographic scale of the target population, English et al. (2018)

solicit mode choice information in their phone survey to generate flying and driving probabil-

ities as a function of one-way driving distance to a given site as well as a subset of household

demographics. These flight probabilities are used in combination with driving distances and

detailed data on marginal driving costs as well as expected flying costs to construct expected

travel costs for every respondent-shoreline site combination.

Given the public funding for this assessment, all data—from processed respondent data

to the final data used in recreation demand estimation—are publicly available. I obtain the

data that English et al. (2018) use directly from NOAA’s Natural Resource damage Assess-

ment (NRDA) public repository.9 I refer the reader to English et al. (2018) for additional

information on the empirical setting and data.

5.2 Model

English et al. (2018) use a nested logit model to characterize demand for shoreline recreation

on the Gulf Coast. The authors estimate the parameters of the nested logit model under

baseline, non-spill conditions and calibrate the estimated model to match observed declines

in recreational user days immediately following the spill in order to compare recreational

values during spill and non-spill conditions.

The benefit of the nested logit in this context is that it allows the authors to capture

the extensive margin of Gulf Coast recreation demand: the upper nest models households’

decision of whether or not to visit a Gulf Coast shoreline site and—conditional on choosing to

visit a site—the lower nest models households’ choice between sites. Building on the notation

of the standard model that I present in Section 2, let uij denote the conditional utility received

by individual i ∈ {1, . . . , N} when selecting Gulf Coast shoreline site j ∈ {0, . . . , J}, where
site j = 0 denotes the outside option of choosing to not visit a Gulf Coast site and j > 0

denotes the inside options of the 83 distinct shoreline sites.10 In the version of English et al.

(2018)’s model that I implement, individual i’s conditional utility from visiting shoreline site

9The Deepwater Horizon NRDA data are available for download here: https://www.diver.orr.noaa.

gov/deepwater-horizon-nrda-data (last accessed 2/29/2024).
10Note that in the behavioral choice data, English et al. (2018) do not observe households making visitation

decisions on repeat occasions, so I suppress the t subscript that I use in the exposition in Section 2.
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j is uij = vij + εij with:

vij =

{
0 for j = 0

ξj − cijα for j ∈ {1, . . . , J}
(20)

where I normalize the observable component of the flow utility from the no visit option,

j = 0, to zero; ξj is a site-specific constant representing mean valuations of that site; and cij

is household-site-specific travel cost.11

In their model, English et al. (2018) assume that εij follows a generalized extreme value

distribution that implies a two-level nesting structure. With the specification of conditional

utility (20), this implies choice probabilities of the following form:

pij(θ) =


1

1+
(∑J

k=1 exp(vik(θ)/ρ)
)ρ for j = 0

exp(vij(θ)/ρ)∑J
k=1 exp(vik(θ)/ρ)

×
(∑J

k=1 exp(vik(θ)/ρ)
)ρ

1+
(∑J

k=1 exp(vik(θ)/ρ)
)ρ for j ∈ {1, . . . , J}

(21)

where ρ is a nesting parameter or “dissimilarity coefficient” that proxies for the degree of

preference correlation within groups.

I take the nested logit model implied by (20) and (21) to the data, estimating the tar-

get parameters, ρ and θ′ =
[
α ξ1 . . . ξJ

]
, via maximum likelihood estimation. This

represents the analog to the model estimates of English et al. (2018), which I interpret as

representing the baseline, standard approach to discrete choice recreation demand modeling

in this context. I also implement the two-stage control function estimator in this setting. As

outlined in Section 4, this involves regressing travel cost on a set of valid instruments, Zij,

and then plugging the residual from this first stage, µ̂ij, into the second stage nested logit

as an observable with an additional target parameter, λ. All that remains to implement this

alternative estimator in the context of English et al. (2018)’s model of Gulf Coast shoreline

recreation is to identify a set of valid travel cost instruments.

5.3 Valid Travel Cost Instruments

A valid instrument for travel cost must satisfy the relatively standard conditions of relevance

and exogeneity: in other words, the instrument must plausibly affect idiosyncratic travel

11English et al. (2018)’s model allows household demographics to enter the flow utility of non-visitation.
Given that my primary focus is on the estimation of the travel cost parameter, α, across different estimators,
I omit this richer specification. As a result, the estimates of lost user day value that I estimate are not
directly comparable to those in English et al. (2018); however, the relative differences that I estimate across
estimators are nonetheless of independent interest and should apply to the findings of English et al. (2018)
and more broadly.
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costs, but be independent of households’ demand for outdoor recreation. There are likely

many possible empirical instruments that analysts can use and—much like other research

designs that rely on instrumental variables—the ideal choice of instruments is certainly

context-specific. However, given the nationwide scale of the current empirical setting, I

seek to identify several possible travel costs instruments that may have relatively broad

application in the recreation demand literature.

Considering the data-generating process for travel costs and the methods used to con-

struct these measures in practice, there are two broad categories of potential travel cost

instruments: those that influence households’ choice of residence location, but not recre-

ation site choices; and those that influence the marginal cost of site visitation, but not

recreation site choices.

A candidate instrument in this first category is a variable that captures the strength of

local labor markets. Recent empirical work on models of equilibrium sorting indicates that

labor market outcomes play a substantial role in determining households’ choice of residence

location (Kuminoff et al., 2013). Thus, variables that capture cross-sectional variation in

the attractiveness of local labor markets are likely to shift individuals’ residence choice,

which in turn determines the distribution of travel costs associated with visiting a fixed set

of recreation sites. Moreover, conditional on residence choice, such variables are plausibly

exogenous to households’ choice of recreation site. In the current empirical application, I

use the employment rate, median income, and population in the Core Based Statistical Area

(CBSA) in which individuals reside to capture cross-sectional variation in the state of local

labor markets.12 These measures, which are intended to proxy the desirability of local labor

markets, will be correlated with travel costs based on the pre-existing distribution of labor

markets in space relative to the recreation sites of interest.

There are several plausible examples of the second category of instruments, those that

influence the marginal cost of site visitation directly. In the case of the US, there is substantial

heterogeneity across states and over time in the level of gasoline tax rates as shown in

Appendix Figure A6. I interact variation in the rate of the gasoline tax in both the state

of destination as well as the intermediate states between origin and destination at the time

a respondent is surveyed with one-way driving distance as an instrument for travel cost in

the present context. Though there is non-trivial cross-sectional variation in gasoline tax

rates, I interact these tax rates with one-way driving distances as households are likely more

sensitive to variation in gas taxes for trips to sites that are further away and therefore require

12I use Core Based Statistical Areas (CBSAs) as these are reasonable proxies for local labor markets given
the use of commuting linkages to define their spatial extent. Data on these CBSA-level measures come from
the US Census Bureau’s 2012 5-year American Community Survey.
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more gasoline consumption. While these tax rates are clearly correlated with households’

expected travel costs, this is likely the only channel through which these tax rates influence

recreation demand.

Another example of an instrument that influences the marginal cost of site visitation

directly is the price of crude oil. However, benchmark indices of the price of crude oil

are likely correlated with seasonal or macroeconomic trends that also influence recreation

demand. I therefore follow the approach of Kilian (2009) to isolate structural supply and

demand shocks in the global crude oil market from expected production and consumption

as well as seasonal fluctuations or changes in aggregate demand. The approach, which I

describe in detail in Appendix B, involves a vector autoregression model using measures of

crude oil production, real economic activity, and the price of oil.

The resulting structural oil supply and demand shocks isolate unanticipated movement

in crude prices that are due to exogenous shocks in oil production and oil demand, respec-

tively. I interact the resulting crude oil supply and demand shock time series, which I plot in

Appendix Figure A7, with one-way driving distance and use these as two additional instru-

ments for travel cost. These instruments follow a “shift-share” logic: shocks to global crude

oil demand or supply work to change the relative prices of sites at different distances from a

household and households closer to the Gulf Coast shoreline sites likely respond differently

to such shocks than households further away from those sites. Since these shocks to the

global crude oil market are plausibly exogenous to household recreation demand, these shifts

in relative prices should serve as valid instruments for travel cost.

5.4 Results

I report estimates from three separate first stage regressions of travel cost on a set of instru-

ments and alternative-specific constants in Table 2. All results in Table 2 weigh observations

using the sample weights constructed by English et al. (2018). Column (1) in Table 2 in-

cludes only the oil shock and state gas tax instruments, with estimated coefficients having

the expected sign. In column (2), I add the CBSA-level measures and in column (3) I in-

teract these measures with one-way driving distance to allow for a more flexible functional

form between the spatial distribution of local labor market quality and travel costs. The

first stage F -statistics of joint nullity all well exceed conventional rule-of-thumb cutoffs for

weak instruments employed in the two-stage least squares literature. Taken together, Table

2 suggests that the selected instruments all satisfy the relevance condition. I use residuals

from the regression reported in column (3) of Table 2 when estimating the second stage.

Table 3 reports parameter estimates and bootstrapped standard errors from maximum

likelihood estimation of the second stage discrete choice model of visitation to Gulf Coast
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Table 2. First Stage Estimates

Travel Cost

(1) (2) (3)

Distance ×
Oil Supply Shock −0.050 (0.011) −0.045 (0.010) −0.031 (0.004)
Oil Demand Shock 0.002 (0.0004) 0.002 (0.0004) 0.001 (0.0002)
Destination Gas Tax 0.017 (0.0002) 0.018 (0.0002) 0.002 (0.002)
Mean Route Gas Tax 0.105 (0.009) 0.093 (0.009) 0.091 (0.007)

log(Employment Rate) 529.4 (14.1) 291.7 (33.1)
×Distance 0.264 (0.022)

log(Median Income) 81.9 (5.74) 227.4 (17.5)
×Distance −0.114 (0.010)

log(Population) 6.82 (0.577) −13.6 (1.23)
×Distance 0.018 (0.0009)

Alternative Specific Constants Yes Yes Yes
Observations 3,462,428 3,462,428 3,462,428
R2 0.356 0.361 0.364
Within R2 0.353 0.358 0.361
F -statistic 3,798.6 5,799.6 9,917.2

Notes: This table reports estimates from a series of first stage regressions of individual- and site-specific
travel cost on a set of instruments and alternative-specific constants. See Section 5.3 for a discussion of
the different excluded instruments. All results weigh observations using the sample weights constructed
by English et al. (2018).

shoreline recreation sites. Column (1) of Table 3 reports estimates from a standard nested

logit model that is analogous to the main estimates in English et al. (2018)—though, as

noted in Section 5.2, I do not model observable demographic heterogeneity in preferences for

the outside option. Despite the different specification, the travel cost and nesting parameters

are quite similar to those reported by English et al. (2018): my estimate of the travel cost

parameter is negative in sign, large, and highly statistically significant and my estimate of

the nesting parameter implies a similar degree of within-nest correlation in preferences as

that found by English et al. (2018).

Column 2 of Table 3 reports estimates from the analogous two-stage control function

estimator described in Section 5.2. Reported standard errors for this model adjust for noise

in the first stage residuals by bootstrapping the entire two-stage procedure. The estimated

travel cost parameter increases in magnitude relative to the baseline esitmates: households’

mean sensitivity to travel cost increases in magnitude from −1.08 in the uncorrected, baseline

estimates to −1.21 in the control function estimates, a 12% increase. Thus, it appears

as though failing to account for potential non-random selection into travel costs and/or

measurement error in travel costs biases estimates of the travel cost parameter towards zero,
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suggesting that standard models in this context underestimate households’ price sensitivity.

Perhaps unsurprisingly given the direction of the apparent bias in the baseline estimates,

the first stage travel cost residuals enter the second stage positively: the estimated parameter

on the travel cost residuals is positive, large-in-magnitude, and highly statistically-significant.

A positive parameter on the first stage residuals in households’ indirect utility indicates that

travel costs are, on average, higher than can be explained by observed factors entering the

baseline estimates in column (1).

It is important to note once again that parameter estimates may not be directly compa-

rable across columns (1) and (2) of Table 3 due to the standard issue with discrete choice

models discussed in Section 2, namely the non-identification of the scale of indirect utility.13

However, the model parameters are not necessarily of independent interest in this context,

but rather serve as key inputs into the calculation of the value of a lost user day due to the

DWH spill. These welfare statistics are directly comparable across the two sets of estimates

given that they do not depend on the scale of indirect utility, much in the same way that

the willingness-to-pay statistic is comparable across the different simulations discussed in

Sections 3 and 4. Given the lack of data on site visitation decisions during the period of the

DWH spill, the process of calculating the lost user day value in English et al. (2018) requires

a somewhat involved calibration procedure, which I discuss in Appendix C.

Table 3 reports estimated lost user day values in dollars per user day based on the base-

line and control function parameter estimates and the procedure outlined in the Appendix.

Using the baseline parameter estimates, I calculate a lost user day value of $7.04 from the

DWH oil spill. Based on the parameter estimates that account for possible endogeneity and

measurement error in travel costs, I estimate a lost user day value of $6.17, a 12% decrease

in the per unit welfare loss resulting from the oil spill. Applying this proportional change

to the aggregate welfare loss estimate of English et al. (2018), this translates into an overes-

timation of the total recreation-based losses from the DWH oil spill of around $82 million,

which suggests that accounting for the challenges discussed herein is of first-order policy

significance.

Unfortunately, it is difficult to determine the precise source of the bias evident in the

standard model estimates based solely on the results in Table 3. Indeed, to determine whether

any non-random sorting towards or away from desirable recreation sites exists in the data, I

would need to specify and estimate a complete model of the residential sorting process—an

important exercise, but ultimately one which is outside the scope of this paper. However,

the overall direction of the bias is nonetheless informative. In the results for Simulations 3

through 6 reported in Figure 4, we see that the baseline, uncorrected parameter estimates

13See Section 2 and Train (2009) for additional discussion.

32



Table 3. Second Stage Estimates

Baseline Control Function

Parameter (1) (2)

Travel Cost ($100s) α -1.080 (0.075) -1.206 (0.068)
Nesting Parameter ρ 0.208 (0.013) 0.160 (0.013)
First Stage Residual λ 0.843 (0.049)

Alternative Specific Constants Yes Yes
Lost User Day Value ($/day) 7.035 6.165
N 41,716
Sites 83

Notes: This table reports estimates from the second stage discrete choice model of Gulf Coast
shoreline recreation site visitation. Parameters are estimated via maximum likelihood estima-
tion. Column (1) employs a standard nested logit model of demand of a similar specification to
that in English et al. (2018). Column (2) implements the analogous two-stage control function
estimator described in Sections 4 and 5.2. Bootstrapped standard errors calculated using 200
replications are reported in parentheses. Standard errors in Column (2) account for noise from
the first stage regression by replicating the complete two-stage procedure for each bootstrap
sample. The process for calculating lost user day values is described in detail in Appendix C.

lead to an overestimation of the magnitude of a similar ratio of parameters as the lost user

day statistic that I report in Table 3. While it is possible that the true data generating

process in the DWH empirical application matches one of Simulations 3 through 6, it is

difficult to determine from Table 3 alone which story is most plausible.

The choice of instruments in this empirical application may offer a simple check of what

could account for the observed differences between the baseline and control function welfare

estimates. Though both sets of instruments—those that shift residence location choices and

those that shift travel costs—should effectively handle both issues of non-random sorting

and measurement error in travel costs, the motivating logic for each is quite different. For

instance, the logic motivating the CBSA-level labor market instruments is that they can ac-

count for non-random spatial sorting of households. Though the structural oil market shocks

and state gas taxes provide exogenous cost shifters that address the threat to identification

of non-random sorting, they are also plausibly orthogonal to the forms of measurement error

that are likely present based on the construction of travel costs. So if I assume that the

CBSA-level instruments are more effective at accounting for non-random sorting and the

cost shifters are more effective at addressing measurement error, I can separately estimate

the control function approach with each set of instruments to see how they influence the

magnitude and direction of bias.

I report the parameter estimates and calculated lost user day values from this exercise

in Appendix Table A2. Though there is little difference between the estimated lost user

day value using the full set of instruments and that calculated from a specification with just
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the oil shock and gas tax instruments—columns (1) and (2) of Appendix Table A2—there

is a large difference in this welfare statistic when only using the CBSA-level labor market

instruments. This specification, reported in column (3) of Appendix Table A2, suggests a

greater degree of overestimation of the magnitude of the lost user day value in the baseline

estimator. If we take the differences in these sets of instruments seriously, this suggests

that sorting may drive a significant share of the observed bias in the baseline, uncorrected

estimates. Moreover, the direction of the bias is consistent with non-random sorting away

from desirable recreation sites as indicated by the results for Simulation 3 above, which may

be plausible given the scale of the target population.

While this exercise is suggestive, it is in no way conclusive. Importantly, the non-random

sorting and measurement error issues are not separable as indicated by their analogous

structure in Sections 3.1 and 3.2 and any valid instrument that is correlated with costs but

independent of unobserved preferences and/or measurement error should effectively address

both issues. Moreover, there is good reason to believe that there is likely some form of mea-

surement error in travel costs in most if not all applications of recreation demand modeling.

The necessity even in the most complex of travel cost calculations of simplifying assumptions

and the use of aggregate data means that this field is likely observed with error. Indeed, even

when the analyst gets travel costs correct on average as was the case in Simulation 4, this

can lead to non-trivial attenuation bias in standard model estimates. Thus, while English

et al. (2018)’s example of estimating recreation-based welfare losses from the DWH oil spill

represents the state-of-the-literature in recreation demand estimation, it also highlights the

importance of addressing what are likely important issues with travel cost models in practice.

5.5 External Validity

The degree to which non-random sorting and measurement error affect conventional esti-

mates of recreation demand models is likely context-specific. The magnitude and direction

of bias in these models will likely vary based on the target population of decisionmakers;

the scope and scale of the choice set under analysis; and the methods used to collect and

construct the necessary choice data, among other factors. Though the goal of this empirical

application building on English et al. (2018) is simply to demonstrate that meaningful dif-

ferences between baseline estimates and control function estimates are possible in empirical

settings, the remarkable scale of this particular application raises important questions around

how well this finding generalizes to more conventional recreation demand applications.

To explore the external validity of the main findings in Table 3, I estimate a version

of the baseline nested logit model and the analogous two-stage control function estimator

using only choice data from respondents that English et al. (2018) define as local to the Gulf
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Coast shoreline sites.14 This exercise offers a test of the influence of geographic scale, which

may plausibly lead to differences in the magnitude and direction of bias in conventional

recreation demand estimates. For example, it is possible that, conditional on deciding to

live in an area near the Gulf Coast, unobservable preferences for specific shoreline sites are

more likely to lead households to sort towards those sites, which would generate bias in the

opposite direction to what we observe in Table 3.

I report results replicating the first and second stages of the two-stage control function

estimator using just the local respondents in Appendix Tables A3 and A4. I find no difference

in the direction of the apparent bias in the conventional estimates using only the local

respondents, suggesting that the main findings of this empirical exercise may generalize to

smaller scale applications. Interestingly, the level of my calculated lost user day value among

the local respondents is lower than that using the nationwide sample; however, it is possible

that there are important differences in the reduction in visitation during spill conditions

across local and non-local respondents for which this calculation does not account.

Moreover, the scale and scope of these “local” estimates are still quite expansive. Con-

ventional applications of recreation demand estimation are often focused at even smaller

scales, for example analyzing lake visitation at the state- or local-level. It is indeed quite

possible that the dominant form of non-random sorting in such applications would be for

households to locate closer to sites for which they have an unobservable, strong preference,

which would result in bias in the opposite direction of what I find in the English et al. (2018)

context. Despite the context-specific nature of these empirical challenges, exploring how the

magnitude and direction of bias in conventional models varies across applications of different

scales remains an interesting area for future research.

6 Conclusion

Recreation demand models inform decision-making across a wide range of applications, from

regulatory impact analysis and resource management to public health and environmental

litigation. Careful estimation of model parameters in these settings is critical to ensure

unbiased inferences when making policy, regulatory, and legal decisions.

I show that two common empirical challenges previously ignored in the recreation de-

mand literature, namely the potential for non-random residential sorting based on prefer-

ences for outdoor recreation and measurement error in travel costs, can substantially bias

estimates in entire classes of commonly used discrete choice models. I demonstrate a simple,

14This definition includes all respondents from Louisiana, Mississippi, Alabama, and Florida, as well as
respondents from Texas and Georgia that are within a half-day drive of a site.
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feasible approach to address these two issues simultaneously in empirical applications. In

particular, I present an instrumental variables estimator that is analogous to two-stage least

squares in the nonlinear context of standard discrete choice models. In a series of numerical

simulations, I find that this relatively straightforward correction substantially outperforms

standard approaches to recreation demand estimation. Moreover, I demonstrate the rela-

tive ease with which analysts can implement this fix by replicating a recent, high-profile

application of recreation demand modeling that estimates the welfare losses from the 2010

Deepwater Horizon oil spill in the Gulf of Mexico, finding that accounting for these twin

problems decreases welfare estimates by 12% in this context.

Based on the findings of this paper, I strongly encourage analysts estimating empirical

models of recreation demand to implement instrumental variables estimators of their under-

lying discrete choice models using the two-stage control function approach. At best, doing

so can demonstrate the robustness of estimates from the standard approaches to recreation

demand estimation if not document meaningful bias from these estimators. In cases where

there is reason to believe non-random sorting on preferences for recreation is important,

analysts may want to consider explicitly modeling residence choices and recreation demand;

however, the two-stage control function approach discussed herein provides a simple means

of calculating unbiased estimates of willingness-to-pay and partial equilibrium welfare.

It is likely that the instrumental variables that I use in the empirical exercise in Section

5 can be applied in other applications of the recreation demand model. More broadly,

instruments that influence households’ choice of residence location or the marginal cost of

site visitation, but not recreation site choices directly, should serve as valid instruments

in practice. Those that I use to estimated a nationwide model of Gulf Coast shoreline

recreation provide an accessible starting point for other applications of recreation demand

modeling where more context-specific instruments may be readily available.

Estimating models of recreation demand requires solving important identification chal-

lenges. Indeed, this is well acknowledged in countless other applications of demand estima-

tion since the seminal work of Wright (1928), with recreation demand estimation a puzzling

outlier. While these findings might be concerning to policymakers and practitioners who

rely on the conclusions from recreation demand models, the relatively simple fix for which I

advocate in this paper should restore faith in this important methodology moving forward.
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A Supplemental Figures and Tables

Figure A1. Performance of Estimators under Varying Degrees of Within-group Idiosyncratic
Preference Correlation

Notes: This figure plots the mean bias of estimated willingness-to-pay (WTP) from three different
estimators for different amounts of within-group correlation in the idiosyncratic, unobservable preference,
ξij , under the Simulation 2 data-generating process: the baseline multinomial logit estimator (“No
Correction”), the multinomial logit estimator with origin group fixed effects (“Origin Group FE”), and
the two-stage control function estimator (“Control Function”). Values on the horizontal axis correspond
to ρξ in the following data generating process for the unobservable preference: ξij = (1−ρξ)ξ̃ij+ρξ ξ̃g(i),

where ξ̃ij is an idiosyncratic component and ξ̃g(i) is a component common across groups of individuals,
g(i). Going from 0.0 to 1.0 on the horizontal axis therefore results in an increasing degree of within-group
correlation of the unobservable preference term. For each estimator and value on the horizontal axis,
I show the mean bias of WTP estimates as a percentage of the true WTP value across 1000 simulated
datasets, each of which includes 10,000 individuals from 10 different origin groups choosing between 20
different alternatives. The data-generating process is identical to that given by (6) and (7) under the
Simulation 2 assumptions, with the exception of the introduction of ρξ.
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Figure A2. Performance of Estimators under Different Recreator Origin Group Sizes

Notes: This figure plots the mean bias of estimated willingness-to-pay (WTP) from three different
estimators for different numbers of recreator origin groups under the Simulation 2 data-generating
process, holding fixed the number of simulated individuals: the baseline multinomial logit estimator (“No
Correction”), the multinomial logit estimator with origin group fixed effects (“Origin Group FE”), and
the two-stage control function estimator (“Control Function”). Values on the horizontal axis correspond
to the number of different recreator origin groups,

∣∣{g(i)}∀i∣∣, used in the data-generating process for

the unobservable preference, ξij = 0.5ξ̃ij +0.5ξ̃g(i). For each estimator and value on the horizontal axis,
I show the mean bias of WTP estimates as a percentage of the true WTP value across 1000 simulated
datasets, each of which includes 10,000 individuals choosing between 20 different alternatives. The
data-generating process is identical to that given by (6) and (7) under the Simulation 2 assumptions,
with the exception of number of groups.
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Figure A3. Performance of Two-stage Control Function Estimator with Nonlinear Unobserv-
able Preference in Data-generating Process

Notes: This figure plots the distribution of estimated willingness-to-pay (WTP) using the baseline
multinomial logit estimator and two-stage control function estimator across 1000 simulated datasets for
different data-generating processes. Each panel corresponds to a different nonlinearity in the unobserv-
able preference term, ξij , under the Simulation 2 data-generating process. Specifically, for each set of
simulations (i.e., panel), I replace ξij with some nonlinear function, f(ξij), in the Simulation 2 data-
generating process outlined in Section 3. In the left panels, ξij enters costs, cij , in (6) as a nonlinear
function; in the center panels, ξij enters utility, uij , in (6) as a nonlinear function; and in the right pan-
els, ξij enters both cij and uij as nonlinear functions. In the top panels, ξij enters as a simple quadratic,
i.e., f(ξij) = ξ2ij + ξij . In the bottom panels, ξij enters as an exponential, i.e., f(ξij) = exp(ξij). All
other aspects of the simulated data-generating process are held fixed as I outline in Section 3, including
the fact that ξij = 0.5ξ̃ij + 0.5ξ̃g(i) and the assumption that ξ̃ij , ξ̃g(i) ∼ N (0.0, 1.0). The true value of
the the willingness-to-pay statistic is shown as a vertical black line.
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Figure A4. Performance of Two-stage Control Function Estimator with Nonlinear Cost
Instrument in Data-generating Process

Notes: This figure plots the distribution of estimated willingness-to-pay (WTP) using the baseline
multinomial logit estimator and two-stage control function estimator across 1000 simulated datasets
for two different data-generating processes. Each panel corresponds to a different nonlinearity in the
exogenous cost instrument, zij , under the Simulation 2 data-generating process. Specifically, for each
set of simulations (i.e., panel), I replace zij with some nonlinear function, g(zij), in the Simulation 2
data-generating process outlined in Section 3. in the left panel, zij enters costs, cij , in (6) as a quadratic
function, i.e., g(zij) = z2ij+zij . In the right panel, zij enters cij as an exponential, i.e., g(zij) = exp(zij).
All other aspects of the simulated data-generating process are held fixed as I outline in Section 3. The
true value of the the willingness-to-pay statistic is shown as a vertical black line.
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Figure A5. Performance of Two-stage Control Function Estimator with Weak Instrument

Notes: This figure shows the performance of the two-stage control function estimator in the presence of
a weak cost instrument. In particular, this figure plots the mean absolute bias (left axis) of estimated
willingness-to-pay (WTP) using the baseline multinomial logit estimator (“No Correction”) and two-
stage control function estimator (“Control Function”) for different levels of instrument strength for the
cost instrument, zij . Each set of simulated datasets follows the structure and assumptions of Simulation
2 as outlined in Section 3, with the exception of the assumed strength of the instrument in the data-
generating process for costs, cij . The horizontal axis corresponds to different levels of instrument
relevance in the data-generating process for costs, i.e., the ρz in cij = 5.0 + ρzzij − 1.0ξij + µij where
the baseline assumption from Simulation 2 is that ρz = 1.0. Instrument strength is therefore increasing
from left to right on the horizontal axis. For each estimator and value of ρz shown on the horizontal
axis, I show the mean absolute bias of WTP estimates as a percentage of the true WTP value across
1,000 simulated datasets. I also plot the average F -statistic across the first-stage regressions used to
implement the control function approach for each simulated dataset (right axis).
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Figure A6. Variation in Nominal State Gasoline Taxes over Time

Notes: This figure plots the distribution of gasoline tax rates across US states from 1960 to 2012. In
particular, the shaded areas show the following annual percentiles of gasoline tax rates: 5th, 10th, 30th,
70th, 90th, and 95th. The black line shows the median state gasoline tax rate. All values are nominal
cents per gallon. I use the geographic variation in gasoline taxes within calendar year 2012 as discussed
in Section 5.3 of the text.
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Figure A7. Time Series Variation in Structural Shocks from Model of Global Crude Oil
Market

Notes: This figure shows estimated structural errors from a vector autoregressive model of the global
crude oil market based on Kilian (2009). The model uses global time series data on global crude oil
production, real economic output, and the real price of oil to calculate structural shocks to aggregate
demand (top), oil demand (middle), and oil supply (bottom).
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Table A1. Willingness-to-pay Estimates for Simulated Choice Data across Three Estimators

Baseline Estimator Origin Group FE Control Function

Mean Bias MSE t-stat Mean Bias MSE t-stat Mean Bias MSE t-stat

Baseline Simulation
Simulation 1 -0.500 -0.000 0.000 -0.004 -0.500 -0.000 0.000 -0.004 -0.500 0.000 0.000 0.027

Non-random Sorting Simulations
Simulation 2 -0.461 0.039 0.002 3.395 -0.463 0.037 0.002 3.273 -0.500 -0.000 0.000 -0.015
Simulation 3 -0.546 -0.046 0.002 -3.709 -0.544 -0.044 0.002 -3.580 -0.500 0.000 0.000 0.014

Measurement Error Simulations
Simulation 4 -0.597 -0.097 0.010 -6.844 -0.597 -0.097 0.010 -6.842 -0.498 0.002 0.000 0.135
Simulation 5 -0.599 -0.099 0.010 -6.619 -0.599 -0.099 0.010 -6.619 -0.466 0.034 0.001 2.713
Simulation 6 -0.535 -0.035 0.001 -2.501 -0.537 -0.037 0.002 -2.647 -0.499 0.001 0.000 0.063

Notes: This table reports summary statistics for willingness-to-pay estimates using the baseline multinomial logit estimator, the
baseline multionial logit estimator with origin group fixed effects, and two-stage control function estimator across 1000 simulated
datasets for each of the 6 simulations described in Section 3. The table reports the average WTP estimate, average bias, and
mean squared error (MSE) across the 1000 simulations as well as the t-statistic for the two-sided test of the null hypothesis that
the simulated WTP values equal the true value. Simulations 1 through 3 assume different non-random sorting data generating
processes: one where the idiosyncratic preference and travel cost are independent (Simulation 1); one corresponding to a model
of household sorting towards desirable recreation sites, where the idiosyncratic preference and travel cost are negatively correlated
(Simulation 2); and one corresponding to a model of household sorting away from desirable recreation sites, where the idiosyncratic
preference and travel costs are positively correlated (Simulation 3). Simulations 4 through 6 assume different measurement error
data generating processes: one where there is additive, mean-zero measurement error in travel costs (Simulation 4); one where
measurement error is increasing in travel distance (Simulation 5); and one where there is both additive, mean-zero measurement
error in travel costs as well as non-random sorting towards desirable recreation sites, where the idiosyncratic preference and true,
unobserved travel costs are negatively correlated (Simulation 6).
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Table A2. Second Stage Estimates from English et al. (2018) Empirical Application Using Different
Combinations of First Stage Instruments

Instrumental Variables: Baseline Cost Shifters Sorting Shifters

Parameter (1) (2) (3)

Travel Cost ($100s) α -1.206 (0.068) -1.266 (0.076) -1.318 (0.071)
Nesting Parameter ρ 0.160 (0.013) 0.180 (0.015) 0.157 (0.014)
First Stage Residual λ 0.843 (0.049) 0.855 (0.054) 0.960 (0.060)

Alternative Specific Constants Yes Yes Yes
Lost User Day Value ($/day) 6.165 6.254 5.566
N 41,716 41,716 41,716
Sites 83 83 83

Notes: This table reports estimates from the second stage discrete choice model of demand for visits to Gulf
Coast shoreline recreation sites using different combinations of first stage instruments. Parameters are estimated
via maximum likelihood estimation. Column (1) implements the two-stage control function estimator described
in Section 5 using the baseline set of instruments discussed in Section 5.3, with results matching those reported
in Column (2) of Table 3. Column (2) implements the two-stage control function estimator using only those
instruments that act as plausible marginal travel cost shifters in the first stage: destination and intermediate
state gas taxes interacted with one-way driving distance and structural oil supply and demand shocks interacted
with one-way driving distance. Column (3) implements the two-stage control function estimator using only those
instruments that act as plausible shifters of residential sorting in the first stage: population, median income,
and employment rates at the Core Based Statistical Area of origin, both without interactions and interacted
with one-way driving distance. Bootstrapped standard errors are reported in parentheses and account for noise
from the first stage regression by replicating the complete two-stage procedure for each bootstrap sample. The
process for calculating lost user day values is described in detail in Appendix C.
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Table A3. First Stage Estimates from English et al. (2018) Empirical Application Using
Local Respondents

Travel Cost

Sample: National Non-local Respondents Local Respondents
(1) (2) (3)

Distance ×
Oil Supply Shock -0.031 (0.004) -0.057 (1.89) 0.006 (0.0008)
Oil Demand Shock 0.001 (0.0002) 0.002 (0.072) 0.0010 (0.00006)
Destination Gas Tax 0.002 (0.002) 0.0004 (0.002) 0.001 (0.003)
Mean Route Gas Tax 0.091 (0.007) 0.062 (0.006) -0.010 (0.024)

log(Employment Rate) 291.7 (33.1) 239.5 (22.5) -58.6 (24.1)
× Distance 0.264 (0.022) 0.193 (0.021) 0.490 (0.046)

log(Median Income) 227.4 (17.5) 190.2 (20.2) 151.3 (7.05)
× Distance -0.114 (0.010) -0.079 (0.012) -0.187 (0.023)

log(Population) -13.6 (1.23) -12.6 (1.46) -5.02 (0.778)
× Distance 0.018 (0.0009) 0.016 (0.001) 0.025 (0.003)

Alternative Specific Constants Yes Yes Yes
Observations 3,462,428 1,112,781 2,349,647
R2 0.364 0.258 0.606
Within R2 0.361 0.255 0.588
F -statistic 9,917.2 5,594.8 3,831.2

Notes: This table reports estimates from a series of first stage regressions of individual- and
site-specific travel cost on a set of instruments and alternative specific constants. See Section
5.3 for a discussion of the different excluded instruments. Column (1) includes the full choice
data from English et al. (2018) and corresponds to the results reported in column (3) of Table 2,
whereas columns (2) and (3) subset to respondents that are not local or are local to the Gulf Coast
recreation sites, respectively. All results weigh observations using the sample weights constructed
by English et al. (2018) to weight observations, where the weights in columns (2) and (3) are
adjusted to reflect the different sample definition.
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Table A4. Second Stage Estimates from English et al. (2018) Empirical Application
Using Local Respondents

Baseline Control Function

Parameter (1) (2)

Travel Cost ($100s) α -3.662 (0.916) -6.736 (1.661)
Nesting Parameter ρ 0.391 (0.077) 0.722 (0.200)
First Stage Residual λ 6.826 (1.862)

Alternative Specific Constants Yes Yes
Lost User Day Value ($/day) 3.001 1.862
N 28,309
Sites 83

Notes: This table reports estimates from the second stage discrete choice model of demand
for visits to Gulf Coast shoreline recreation sites using respondents that are local to the sites
as defined by English et al. (2018). Parameters are estimated via maximum likelihood estima-
tion. Column (1) employs a standard nested logit model of demand of a similar specification
to that in English et al. (2018). Column (2) implements the analogous two-stage control func-
tion estimator described in Sections 4 and 5.2. Bootstrapped standard errors are reported in
parentheses. Standard errors in Column (2) account for noise from the first stage regression
by replicating the complete two-stage procedure for each bootstrap sample. The process for
calculating lost user day values is described in detail in Appendix C.
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B Estimating Structural Oil Market Shocks

It is possible that seasonality in crude oil prices or macroeconomic trends that influence the

global crude oil market also affect household recreation. As a result, I follow the approach of

Kilian (2009) to isolate structural supply and demand shocks in the global crude oil market

from factors which may otherwise be correlated with recreation demand. This approach uses

a novel measure of global real economic activity as well as global crude oil production to

decompose the real price of crude oil into three components: (1) crude oil supply shocks; (2)

demand shocks for industrial commodities, a proxy for aggregate demand; and (3) demand

shocks for crude oil.

To isolate structural shocks in the global crude oil market following Kilian (2009), I

acquire data on monthly global crude oil production and US refiner acquisition costs, which

proxies crude oil prices, from the US Energy Information Administration (EIA). I obtain

a monthly index of global real economic activity from Kilian (2009), which is available

through the Federal Reserve Bank of Dallas.2 This monthly index, which proxies for global

business cycle trends, is derived from a panel of dollar-denominated global bulk dry cargo

shipping rates. This index can be viewed as a proxy for the volume of shipping in global

industrial commodity markets. Given the importance of freight in international trade, this

index provides a strong indicator of global demand pressures and is more closely linked with

global real output than other measures such as GDP (Kilian, 2009). I combine data on these

monthly time series for the period from January 1985 to October 2023.

Following Kilian (2009), I isolate structural shocks in the global crude oil market from

these data using a vector autoregressive (VAR) model. Let x′
t =

[
∆prodt reat rpot

]
where

∆prodt is the percent change in global crude oil production, reat is the index of real economic

activity from Kilian (2009), and rpot is the real price of oil. The structural VAR is as follows:

A0xt = α +
24∑
i=1

Aizt−i + εt (B1)

where εt is a vector of serially and mutually uncorrelated structural shocks. Following Kilian

(2009), I assume that A−1
0 has a recursive structure such that the reduced form errors in

2The global real economic activity index is available for download here: https://www.dallasfed.org/
research/igrea (last accessed 3/4/2024).
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(B1), et, can be decomposed as follows:

et =

e
∆prod
t

ereat

erpot

 =

a11 0 0

a21 a22 0

a31 a32 a33


 εoil supply shock

εagg demand shock

εoil demand shock

 (B2)

where εoil supply shock, εagg demand shock, and εoil demand shock are the structural errors of interest.

Thus, with estimates of the autoregressive parameters, A0, and reduced form errors, et, from

the empirical implementation of (B1), it is possible to construct estimates of the structural

error terms.

This model implicitly assumes several exclusion restrictions. In particular, the model

assumes that oil supply does not respond to innovations in oil demand within the same

month, i.e., a vertical short run supply curve. Moreover, the model structure assumes that

changes in the real price of oil driven by oil-specific shocks will not lower global real economic

activity immediately. Any changes in the real price of oil that cannot be explained by unpre-

dictable innovations to global oil production or real economic activity will, by construction,

reflect changes in the demand for oil rather than changes to the demand for all industrial

commodities.

Figure A7 plots quarterly averages of the estimated monthly innovations to aggregate

demand, oil demand, and oil supply. As is clear from Figure A7, the real price of oil is

a function of a number of concurrent shocks, each of which is driven by different global

phenomena. Several events clearly emerge in Figure A7, including the Great Recession and

the Covid-19 pandemic.
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C Calculating Lost User Day Value

Given that the shoreline recreation demand model in Section 5.2 is estimated using data

from the post-spill period, it recovers preferences for shoreline recreation in the Gulf of

Mexico under the baseline or no-spill conditions. In order to calculate estimates of the lost

user day value due to the Deepwater Horizon (DWH) oil spill, it is therefore necessary to

estimates how demand shifted in response to the spill. Given the lack of site choice data

during the spill period—which lasted approximately 5-6 months after the DWH explosion in

April 2010—and the relatively extreme nature of the spill conditions, English et al. (2018)

uses external information from the onsite counts to infer changes to overall preferences for

individual sites induced by the spill.

This external information is based on the analysis of Tourangeau et al. (2017) and is

used to infer changes in affected sites’ alternative specific constants. In particular, English

et al. (2018) use estimates on the proportional reduction in trips to two broad categories

of sites—the Northern Gulf and the Florida Peninsula (see Figure 5 in the main text)—to

calibrate affected sites alternative specific constants to reflect spill conditions. Letting the

estimates of the proportional reduction in visitation be denoted by rg for g ∈ {Northern
Gulf, Florida Peninsula}, the calibration exercise entails selecting group-level adjustments,

δg, to the alternative specific constants such that

ξ1j =


ξ0j + δNG for j ∈ JNorthern Gulf

ξ0j + δFP for j ∈ JFlorida Peninsula

ξ0j otherwise

(C1)

where JNorthern Gulf and ∈ JFlorida Peninsula are the sets of sites that fall within the Northern

Gulf and Florida Peninsula, respectively; ξ0j are the alternative specific constants estimated

under baseline conditions; and ξ1j are the calibrated alternative specific constants under spill

conditions.3

3English et al. (2018) model two distinct spill condition periods, one immediately after the spill in which
both affected regions experience a fixed reduction in visits and a later spill condition period where only
the Northern Gulf experiences adverse impacts from the spill, with a lower reduction in observed visitation
for this region during this later period. For simplicity and for the sake of comparing estimates across the
standard and control function estimators, I focus on estimating lost user day values for the first period only
since the calculation is analogous during the second period.
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To calibrate δg, I first calculate spill condition choice probabilities as follows:

s1j =


(1− rNG)s

0
j for j ∈ JNorthern Gulf

(1− rFP )s
0
j for j ∈ JFlorida Peninsula

s0j otherwise

(C2)

I then iterate over the following contraction mapping until convergence, where for each

iteration t, the next iterate is given by:

δ(t+1)
g = δ(t)g + log(s1j)− log(ŝj(ξ

1
j )) (C3)

where—with some abuse of notation—ŝj(ξ
1
j ) is the model-implied market shares based on

the choice probability defined in Section 5.2, total households facing each choice occasion,

the parameters estimated under baseline conditions; and the alternative specific constants

under the spill conditions.

With estimates of the shoreline recreation demand model under baseline conditions and

the calibrated alternative specific constants under spill conditions, it is possible to calculate

welfare losses following English et al. (2018). In particular, the value per lost trip from the

spill conditions is given by:

∆CV =

∑N
i=1 Ti

1
α̂

[
log

(
1 +

(∑J
j=1 exp

( v̂1ik
ρ̂

))ρ̂
)
− log

(
1 +

(∑J
j=1 exp

( v̂0ik
ρ̂

))ρ̂
)]

∑N
t=1 Ti

(
(p̂0i,NG + p̂0i,FP )− (p̂1i,NG + p̂1i,FP )

) (C4)

where Ti is the number of choice occasions that observation i represents (i.e., an observation-

level weight); v̂1ik is the calibrated estimate of conditional utility under spill conditions; v̂0ik is

the estimate of conditional utility under baseline conditions; α̂ and ρ̂ are parameter estimates;

p̂0i,NG and p̂0i,FP are estimates of the probability of visiting a North Gulf or a Florida Peninsula

site under baseline conditions, respectively; and p̂1i,NG and p̂1i,FP are calibrated estimates of

the probability of visiting a North Gulf or a Florida Peninsula site under spill conditions,

respectively. The numerator is based on the standard log-sum formula for the welfare loss

due to changes in conditional utility and the denominator gives the change in trips to the

North Gulf and Florida Peninsula. To translate (C4) into a value per user day, I divide by

the mean number of recreational days per trip.
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