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Abstract

Consumer subsidies are a common policy tool for supporting the adoption of clean
energy technologies. Policymakers often justify these programs as a means of stim-
ulating infant industries, arguing that greater demand increases industry learning-
by-doing, which in turn reduces costs for potential entrants. This requires learning
spillovers between firms that make experience-based cost reductions a public good.
However, spillovers can reduce firms’ incentives to expand output and lower costs. To
evaluate this tradeoff, I estimate a dynamic structural model of the market for solar
panel installations in California that endogenizes firms’ entry and exit decisions and
allows for learning-by-doing with knowledge spillovers. I find that a 1% increase in a
firm’s cumulative production leads to a 0.7% reduction in installation-specific costs and
that learning spills over across firms. Counterfactual analysis reveals that a state-level
consumer subsidy program increased solar adoption by 4% and installer entry by 9%,
indicating that industry cost reductions outweigh any strategic incentives for firms to
reduce learning. While consumer subsidies achieve industry growth, I find that stan-
dard industrial policies such as entry subsidies provide greater welfare gains.
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I’ve long said: When I think climate I think jobs... We’re bringing critical supply chains
and technologies home for electric vehicle batteries, solar panels, wind turbines.

—Remarks by President Biden on the Anniversary of the Inflation Reduction Act
August 16, 2023

1 Introduction

Policymakers view subsidies to consumers as a win-win, providing constituents with resources

to address externalities while also spurring growth and entry in target industries. This is

apparent in efforts to decarbonize the United States economy. Facing political constraints

on the use of first-best policy instruments such as a carbon tax, US policymakers appear

to prefer decarbonization policies that target growth in specific clean energy technologies.

For example, the Inflation Reduction Act (IRA) of 2022 provides $392 billion in tax credits

and direct expenditures for clean technologies, including over $50 billion in tax credits for

consumers (CBO, 2022). A number of provisions in the IRA, which represents the largest

federal response to climate change to date, explicitly target growth in domestic employ-

ment and supply chains for clean energy technologies by including domestic sourcing and

labor requirements (Bistline et al., 2023). This shift in political revealed preference towards

second-best climate policies raises questions around how to best design and implement these

politically-feasible policy instruments.

The policy debate surrounding consumer subsidies for clean technologies highlights the

potential for industry growth, but can consumer subsidies encourage firms to enter infant

industries? By increasing demand, consumer subsidies increase industry-wide experience-

based cost reductions, or learning-by-doing, resulting in lower production costs for potential

entrants. However, since a firm’s rivals can benefit from a portion of the cost reductions the

firm achieves, potential knowledge spillovers reduce the incentives incumbent firms face to

lower costs by expanding output (Ghemawat and Spence, 1985). The net effect of consumer

subsidies on growth and entry in target industries is therefore an empirical question, one

which depends on the rate of learning-by-doing and the size of knowledge spillovers.

In this paper, I study consumer subsidies in the market for solar photovoltaics (PV) and

their impact on growth in the PV installation industry. To do so, I build and estimate a

dynamic structural model of the market for solar panel installations that endogenizes firms’

entry and exit decisions and accounts for learning-by-doing with knowledge spillovers. Using

data on the residential solar PV market in California from 2008 to 2013, I find evidence of

substantial learning-by-doing and knowledge spillovers across firms. Counterfactual analysis

suggests that a state-level consumer subsidy program expanded the solar PV industry.
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Solar PV is a key technology for mitigating the catastrophic consequences of climate

change due to its minimal life cycle greenhouse gas emissions and its ability to displace

conventional, greenhouse gas-intensive electricity sources. Policymakers have provided sub-

stantial public subsidies for the adoption of solar PV, with many programs targeting res-

idential consumers. The non-trivial design and construction of PV systems has given rise

to an industry of intermediary firms that offer PV installations as a service. These inter-

mediary installers play a major role in the solar market: solar installation firms employed

over 171,000 workers in the US in 2022, about 65% of total US employment in solar PV

(Interstate Renewable Energy Council, 2023). Moreover, a growing share of the cost to end

consumers is attributable to local installation costs. For example, Barbose et al. (2022) es-

timate that the share of US residential consumers’ final costs attributable to installers rose

from around 40% in 2006 to over 80% in 2016. Despite accounting for a growing share of final

costs, the cost components attributable to installers have fallen in recent years, with existing

anecdotal and empirical evidence suggesting potential installer learning-by-doing (Bollinger

and Gillingham, 2019; Fu et al., 2016; Nemet, 2019).

In comparison to PV manufacturers, relatively little is known about the intermediary

installer market despite its growing contribution to costs. California offers an ideal setting

in which to study this component of the solar industry for two reasons. First, California

is home to nearly half of all US residential PV systems, making it the largest market for

residential solar in the US (Barbose et al., 2022). Second, California has a long history of

generous consumer subsidies for solar PV, which in many cases sought to not only increase

take-up of this clean technology, but also spur industry growth in the state. For example, the

California Solar Initiative (CSI), which ran from 2007 to 2013 with a budget of $2.2 billion,

provided direct cash rebates to households. In addition to targeting the decarbonization of

California’s electrical grid, an explicit goal of the CSI was to “establish a self-sufficient solar

industry” (California State Senate, 2006).

To evaluate this goal and shed light on the efficacy of consumer subsidies as an unconven-

tional form of industrial policy, I develop a dynamic structural model of the market for res-

idential solar PV installations in California based on the theoretical framework for dynamic

oligopoly of Ericson and Pakes (1995). A structural model is necessary to address this ques-

tion for several reasons. First, the model allows me to estimate firms’ profit margins, which

together with the data on hardware costs isolates the component of production costs directly

associated with installation. Second, I am ultimately interested in measuring—among other

outcomes—changes in firms’ exit and entry behavior, both of which are inherently dynamic

decisions: they involve consideration of expected future earnings, which a model enables me

to estimate. Finally, developing and estimating a structural model allows me to simulate
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industry outcomes under counterfactual policy environments.

The model endogenizes consumer demand for solar PV installations as well as installation

firms’ entry, exit, and quantity-setting decisions. Consumer demand for differentiated solar

PV installations is static and follows the random coefficient nested logit model of Brenkers

and Verboven (2006). Incumbent installers’ installation-specific costs are a function of their

own cumulative production as well as the cumulative production of their rivals to allow

for learning-by-doing and learning spillovers. In each geographic market, incumbent firms

dynamically choose a quantity of installations to provide conditional on their marginal costs

and their beliefs about future learning. I model firms’ product market decisions as dynamic

to capture the incentives to select a production level today based on its impact on own and

rival costs in the future. Incumbent firms then choose whether to exit by comparing their

expected discounted future profits with an idiosyncratic scrap value while a market-specific

pool of potential entrants make one-shot entry decisions based on their expected discounted

future profits and an idiosyncratic cost of entry. Firms’ strategies lead to a Markov Perfect

Equilibrium, which I assume is well-approximated by a Moment-based Markov Equilibrium

concept (Ifrach and Weintraub, 2017).

I estimate the model using detailed, system-level data on prices, rebates, installed capac-

ities, and hardware costs for 95% of all California residential PV systems installed between

2008 to 2013. I acquire the bulk of the system-level data from the Lawrence Berkeley Na-

tional Laboratory’s “Tracking the Sun” database, including information on the timing and

location of each installation as well as the identity of the installing firm. I combine these

data with information on system-level hardware costs in California, which I acquire from

the California Public Utilities Commission. The hardware cost data are important as they

allow me to isolate the component of installers’ marginal costs in which learning-by-doing

could occur, which I otherwise do not observe. I aggregate these system-level data to the

county-quarter level for all installers that I observe operating between 2008 and 2013.

My approach to estimation builds on the family of two-step estimators of dynamic games

and their various applications (Bajari et al., 2007; Collard-Wexler, 2013; Fowlie et al., 2016;

Pakes et al., 2007; Ryan, 2012). The main components of the model that I estimate in-

clude: the demand system for residential solar PV installations, firms’ marginal installation

cost function, and the distributions of scrap values and entry costs. In the first stage, I

estimate the static demand parameters and flexibly estimate the exit policy function and

transition process of state variables from the data. I use the first stage estimates to obtain

a flexible approximation of firms’ value functions—which approximate expected discounted

future profits—following recent work in the dynamic games literature (Barwick and Pathak,

2015; Barwick et al., 2021; Kalouptsidi, 2018; Sweeting, 2013). In the second stage, I form
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moments from the model’s optimal quantity-setting and exit conditions to first recover the

parameters governing production costs (i.e., learning) and exit. I then use these estimates

to formulate the likelihood of observed entry decisions to recover the full set of dynamic

parameters of interest.

The model estimates reveal two main findings. First, I find evidence of substantial

learning-by-doing in California’s residential solar PV installation industry. Specifically, I

estimate that a 1% increase in a firm’s experience decreases marginal installation costs

between 0.7 and 0.9%. This translates to an average reduction in marginal installation costs

of $1.12 per watt (W) from the first quarter of 2008 to the final quarter of 2013. For context,

the average total system cost in the sample declined from $8.63/W to $3.55/W, implying

that installer learning accounts for roughly 25% of observed reductions in final costs.

Second, I find that learning spills over across installation firms. The learning benefits

from a 1 unit increase in total industry experience generates 82% of the learning benefit

of a 1 unit increase in a firm’s own experience. This implies that learning spillovers from

rivals are substantial and not far from individual learning in terms of their contribution to

firms’ experience-based cost reductions. To explore the underlying mechanisms, I estimate

alternative specifications of the model that allow for differential spillovers across firms based

on the source of rivals’ experience. I find differences in the size of spillovers when I allow for

differential contributions to learning from rivals based on their geographic market, suggesting

that knowledge transfer between firms is facilitated by some mechanism that is stronger at the

market-level. Examples might include: the movement of workers between firms, the visibility

of rivals’ installation practices, or passive learning by market-level regulatory regimes.

I use the estimated model to evaluate the implications of various counterfactual policy

environments. These counterfactuals reveal two main findings. First, I find that the CSI,

the state’s main consumer subsidy policy, increased not only solar adoption by 4%, but

also the number of operating firms by 9%. Counterfactual simulations that assume smaller

learning spillovers than my model estimates reduce the CSI’s impact. This suggests that

knowledge transfer across firms is the main mechanism through which consumer subsidies

lead to additional entry and industry growth. I also compare the existing CSI program to

alternative rebate designs and other forms of climate policy, including a $30/ton carbon tax.

Focusing solely on outcomes in the state’s solar PV market, I find that the CSI’s decreasing

rebate structure results in higher welfare relative to alternative consumer subsidy designs

and climate policies. Thus, if policymakers approach to decarbonizing the economy involves

targeting growth in specific clean technologies—perhaps as a result of political constraints

on first-best policy tools—consumer subsidies may be an effective means of doing so.

Second, I find that consumer subsidies may not be as effective as more conventional forms
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of industrial policy such as entry subsidies. I implement a set of counterfactual policies in

which I remove the CSI subsidies and replace them with entry subsidies of varying sizes.

The entry subsidies greatly increase not only the number of active incumbents, but also the

number of solar PV installations. Moreover, each of the counterfactual entry subsidies greatly

increases total welfare, mostly through greater consumer surplus and lower net-of-subsidy

total entry costs. The difference in performance of the CSI and entry subsidies is driven

by the targeting of each type of subsidy: the CSI’s consumer subsidies primarily work to

decrease exit and raise the profits of inframarginal incumbents that would be active without

the subsidies. This finding suggests that, though consumer subsidies may be an appealing

second-best tool for policymakers to achieve decarbonization and industrial policy goals in

specific technologies, other approaches may be more effective on these outcomes.

These findings contribute to a large literature on learning economies by estimating a

model of learning-by-doing with endogenous market structure. Theoretical work shows that

cumulative experience can impact market outcomes (Arrow, 1962; Besanko et al., 2010;

Cabral and Riordan, 1994; Fudenberg and Tirole, 1983; Spence, 1981). Ghemawat and

Spence (1985) use numerical simulations to show that non-appropriable learning can influence

market structure by undercutting barriers to entry. A vast empirical literature seeks to

explore these theoretical results by recovering learning curves in specific contexts, including

the production of aircraft (Benkard, 2000, 2004), ships (Thompson, 2001, 2007; Thornton and

Thompson, 2001), semiconductors (Irwin and Klenow, 1994), oil (Kellogg, 2011), automobiles

(Levitt et al., 2013), and wind turbines (Covert and Sweeney, 2022). Several studies have

found learning spillovers in different contexts (Covert, 2015; Irwin and Klenow, 1994; Kellogg,

2011; Thornton and Thompson, 2001). In related work, Bollinger and Gillingham (2019)

estimate learning-by-doing by solar PV installers in California and find non-zero spillovers

across firms.1 My findings build on this literature by endogenizing market structure, thereby

connecting empirical findings of learning spillovers to early theoretical work.

This work also contributes to a large literature on industrial policy, which has grown in

recent years as policymakers increase their use of these tools (Juhász et al., 2023). Empirical

analysis of industrial policy focuses on various forms of trade policy, including research and

development subsidies (Bloom et al., 2002; Hall and Van Reenen, 2000), production subsidies

(Barwick et al., 2021; Kalouptsidi, 2018), place-based policies including trade adjustment as-

sistance (Kline and Moretti, 2014), and environmental subsidies (Aldy et al., 2022). Despite

1While the ongoing work of Bollinger and Gillingham (2019) is quite similar to mine, there are several
key differences worth noting. First and most notably, my model endogenizes firms’ entry and exit decisions
whereas Bollinger and Gillingham (2019) do not model these decisions and hold them fixed in the data.
Second, Bollinger and Gillingham (2019) do not account for the potential for serially-correlated productivity
shocks in their production cost estimation, whereas my estimation approach does.
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the fact that policymakers often justify demand subsidies on industrial policy grounds, there

is comparatively little research evaluating the effectiveness of such programs for achieving

these objectives. The findings of my analysis expand the existing rigorous evidence to include

less conventional forms of industrial policy.

These results emphasize the importance of evaluating a broad set of equilibrium out-

comes when studying the impact of subsidy policies. A large and growing literature studies

the economics of solar PV policies, focusing primarily on the impact of subsidies on adop-

tion rates, finding that while consumer subsidies have increased the adoption of solar PV,

these policies are not justified by the static environmental benefits of adoption alone (Boren-

stein, 2017; De Groote and Verboven, 2019; Gillingham and Tsvetanov, 2019; Hughes and

Podolefsky, 2015). In contrast, Gerarden (2022) demonstrates that accounting for manu-

facturer innovation decisions can justify the level of solar PV subsidies. A broader set of

papers examine dynamic issues in other clean technologies—for example, Armitage (2022)

evaluates the timing of policy support for efficient lighting. My analysis is closely related to

van Benthem et al. (2008) and Langer and Lemoine (2022), who derive theoretical results

and demonstrate via numerical simulation that accounting for dynamic considerations such

as persistent price reductions and passive learning-by-doing can rationalize existing PV sub-

sidy design. My results contribute to this literature by providing empirical evidence that

accounting for learning and evaluating market size and structure provides a more complete

assessment of the impact of clean technology subsidies.

The rest of the paper is organized as follows. Section 2 provides an overview of the solar

PV industry and policy environment. Section 3 discusses the data I use in my analysis and

provides some descriptive results on solar PV installers in California. Section 4 presents the

model. Sections 5 and 6 describe estimation and the model estimates. Finally, Section 7

presents results from counterfactual policy simulations while Section 8 concludes.

2 Economic and Policy Landscape

2.1 Solar PV Industry

The global solar industry has grown rapidly since the first commercial application of PV tech-

nology on satellites in the 1950s. Solar modules—more colloquially referred to as panels—

consist of interconnected solar cells, which convert sunlight into electricity via the photo-

voltaic effect. Since the creation of the first practical solar cell by Bell Labs in 1954, steady

technological innovation and improved manufacturing efficiency have contributed to substan-

tial reductions in the cost of solar modules (Nemet, 2019). From 1975 to 2021, the price of

solar modules declined over 99%, from $115 to under $0.5 (2021 USD) per watt (W) of ca-

6



pacity (IRENA, 2022; Nemet, 2009). Unsurprisingly, adoption of solar technology increased

dramatically during this period: global solar capacity grew from just under 1 gigawatt (GW)

to over 1 terrawatt (TW) from 2000 to 2022, a 1000-fold increase (IRENA, 2023).

Solar PV is a modular technology that is manufactured at-scale. This allows for a wide

range of applications, from utility-scale power generation to small, distributed residential

systems, the latter of which are the focus of this paper. The installation of residential PV

systems requires non-trivial design and construction. The fact that installation occurs in

most cases on consumers’ rooftops introduces site-specific features that require idiosyncratic

design solutions.2 The practical challenges associated with rooftop installation as well as

the technical nature of a PV system’s electrical components means that specialized labor

is necessary for construction. These features combined with a convoluted regulatory envi-

ronment that involves different permitting and inspection requirements across jurisdictions

and, in many cases, generous but difficult-to-navigate incentive programs has given rise to

an industry marketing PV installation as a service. These installation firms source hardware

inputs; design and construct systems; and manage the necessary permitting, inspection, and

other administrative processes for households.

While remarkable reductions in the cost of manufactured solar panels have occurred at a

global scale, an increasing share of the cost to the end consumer is attributable to installers

operating at the local level. Figure 1 shows data collected by Lawrence Berkeley National

Lab on solar PV hardware costs and median installed costs for residential consumers in the

US over 2000-2021. As shown by the bars in Figure 1, the share of residential consumer’s

installation costs that is attributable to installers (e.g., installation labor costs, permitting

costs, and installer markups) grew over this period, increasing from a low of around 40% in

2006 to a high of over 80% in 2016 (Barbose et al., 2022).

Despite accounting for a growing share of final costs, these cost components attributable

to installers—so-called “soft” costs—have also fallen in recent years; however, not nearly

as fast as hardware costs (Fu et al., 2016). Existing anecdotal and empirical evidence in-

dicates that these soft cost reductions have been driven by a number of factors, including

local installers improving processes and learning from one another as well as streamlined

policies around PV installation (Bollinger and Gillingham, 2019; Nemet, 2019; Nemet et al.,

2017). A key issue for these existing estimates of declines in soft costs and their drivers

is the difficulty of separating installer costs and markups, with Bollinger and Gillingham

(2019) a noteworthy exception in their explicit modelling of installer pricing incentives. De-

termining the magnitude and sources of any reductions in installation-specific costs remains

2No more than 2% of solar PV adopting households installed ground-mounted systems in the US from
2000 to 2021 (Barbose et al., 2022).
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Figure 1. PV System Installed Cost Components, 2000-2021

Notes: This figure shows estimates of the installed cost—i.e., the cost paid by the end consumer—and
hardware component cost per watt of installed capacity for residential photovoltaic (PV) systems in
the US from the Lawrence Berkeley National Lab’s “Tracking the Sun” report (Barbose et al., 2022).
Estimates of hardware costs include the cost of PV modules and inverters. Bars show the share of the
median installed cost attributable to components other than hardware costs (i.e., installation labor,
permitting costs, installer markups, etc.) over time.

an empirical question and is a key objective of this paper.

2.2 California’s PV Policy Environment

California is home to nearly half of all US residential solar PV systems (Barbose et al., 2022).

While California’s sunny climate likely drives much of the observed high solar adoption

rates, generous PV adoption policies also play a major role. Since the late 2000s, California

households have been eligible for a wide range of adoption incentives at both the state and

federal levels. I discuss several key incentive programs below. Figure A1 shows how adoption

subsidies and the consumption benefits of residential solar compare with the average upfront

installation cost over time for California households.

2.2.1 State Rebates and Federal Tax Credits

Under the California Solar Initiative (CSI), the largest direct rebate program available to

consumers in the state, certain households were eligible for direct cash rebates based on the
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quantity of PV capacity they installed. The CSI program started in 2007 with a planned 10-

year budget of $2.2 billion—although the program was exhausted by mid-2013—and provided

rebates to customers of the state’s three main investor-owned Utilities (IOUs): Pacific Gas

and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric

(SDG&E), who together service the majority of California ratepayers. Funding for the CSI

came directly from the IOU ratepayers, so rather than a fiscal outlay, the program functioned

as a transfer between households in the state.

The schedule of rebates under the CSI was unique in that it was designed explicitly with

learning-by-doing and industry cost savings in mind. Rebate levels started at $2.50 per

watt (W) of installed system capacity and then gradually stepped down over 10 rate levels

based on cumulative installed capacity in each IOU’s service area (see Appendix Figure A2

for the full CSI rebate schedule). This subsidy design assumes that as industry experience

accumulates, industry costs decline, thereby reducing the quantity of rebates necessary to

incentivize adoption. Figure 2 shows the resulting spatial and temporal variation in rebates

available under the CSI across the three main IOUs. As is clear from Figure 2, the rebate

steps change at different times for each IOU, with consumers and firms facing sharp drops in

rebate generosity at each step change based on the cumulative quantity of capacity installed

throughout an IOU service territory. These sharp changes in rebate levels across IOUs and

over time provides plausibly-exogenous variation in net-of-rebate prices that is useful in

estimation as I discuss in Section 5.

An interesting feature of the CSI is the motivation for its creation. The CSI came out of

the “Million Solar Roofs Initiative,” a program announced by California’s governor in August

2004 with the explicit goal of achieving one million residential solar installations by 2016.

In addition to reducing emissions of harmful greenhouse gases and local air pollutants from

California’s electrical grid, an express-stated goal of the CSI was to “establish a self-sufficient

solar industry” (California State Senate, 2006). To do so, the CSI aimed to “transform the

market for solar energy by reducing the cost of solar” (CPUC, 2009). A primary motivation

of this paper is to evaluate this objective by estimating the extent to which the CSI reduced

the installed cost of solar PV systems and changed the structure of the installation industry.

Solar-installing households have also been eligible for a 30% non-refundable federal tax

credit on the cost of an installed PV system since 2007. Prior to 2009, this investment

tax credit (ITC) was capped at $2,000 for claiming households; however, since 2009, the

residential ITC has been uncapped. Importantly, the federal ITC is applied net of any

direct rebates a household receives. With net-of-subsidy system costs ranging anywhere

from $20,000 to $60,000 (2013 USD) over 2000-2020, the federal ITC represents a substantial
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Figure 2. Spatial and Temporal Variation in CSI Rebates across IOUs

Notes: This figure shows the spatial and temporal variation in rebates available under the California
Solar Initiative (CSI). The variation is driven by the spatial distribution of each of the three main
investor owned utilities (IOUs), Pacific Gas & Electric (PG&E), Southern California Edison (SCE), and
San Diego Gas & Electric (SDG&E), which is shown in the left panel, as well as the cumulative installed
capacity of solar PV in each IOU’s service territory. Since the level of the CSI rebate is a function of
cumulative installed capacity (see Appendix Figure A2), this drives the variation in rebate levels over
time across IOUs, which is shown in the right panel. County boundaries are shown in grey in the left
panel. Sources: California Public Utilities Commission and US Census Bureau.

subsidy towards the upfront cost of PV adoption.3

2.2.2 Net Energy Metering and Retail Electricity Pricing

Another way in which California subsidizes households’ adoption of solar PV is through

the structure of retail electricity rates and a policy known as net energy metering (NEM).

California IOUs collect most of their residential revenue through increasing-block pricing,

a volumetric rate structure that increases the marginal price of electricity as a household’s

total consumption increases within a billing period. Since these residential rates have little

to no fixed monthly charge or non-volumetric charge, Borenstein (2017) points out that high-

consumption households face greater returns from PV installation. NEM, which was first

adopted in the 1990s, is a policy that requires the IOUs to purchase any excess electricity

generated by grid-connected households with solar PV at their marginal retail electricity

3California had its own investment tax credit (ITC) program prior to 2006. The program gave claiming
taxpayers a 15% non-refundable state tax credit prior to 2004, declining to a 7.5% credit for 2004-2005.
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rate for the billing period. In effect, this policy allows households to run their electricity

meters backwards anytime their PV system is generating more electricity than they are

consuming. Given that marginal retail electricity rates far exceed marginal generation costs,

this represents a substantial subsidy to PV-adopting households (Borenstein, 2017).4

3 Data and Descriptive Evidence

3.1 Data Sources

In this section, I summarize my primary data sources and sample restrictions. A compre-

hensive discussion of the data used in my empirical analysis is available in Appendix B. I

construct a dataset that tracks individual installation firms’ average prices, market shares,

hardware costs, and experience as well as entry and exit decisions across different markets—

which I define at the county-level—and quarters.

I collect information on individual solar PV installers from the Lawrence Berkeley Na-

tional Laboratory’s (LBNL) “Tracking the Sun” database (Barbose et al., 2022). LBNL

collects system-level data on PV systems annually from state agencies and utilities that

administer PV incentive programs, renewable energy credit registration systems, or grid

interconnection processes. The database includes information on the date of installation,

system size, total installed price, total pre-tax rebate value, customer type (i.e., residential

or commercial), zip code, mounting type (i.e., ground- or roof-mounted), and installer name,

as well as various technical details about the installed hardware, including the energy con-

version efficiency (i.e., how much incoming solar radiation a panel converts into electrical

power), make, and manufacturer of installed PV modules. The full sample includes data on

over 2.5 million PV systems installed from 2000 to 2021, which is approximately 77% of the

total estimated US market for PV systems over that period. The data for California cover

over 98% of total installations in the state from 2000 to 2021(Barbose et al., 2022).5

I subset these system-level data in several ways before constructing the main datasets

used in my empirical analysis. First, I restrict the data to only include systems installed in

California and further remove all non-residential systems, all ground-mounted systems, any

4Concerns around the generosity of NEM and the potential for utilities to recoup NEM-related costs
from non-NEM households led to the introduction of an IOU-specific fixed fee and volumetric charge for
NEM systems, which the CPUC collectively referred to as NEM 2.0. These fixed interconnection fees and
volumetric charges were designed to help the IOUs cover costs associated with the NEM subsidy without
affecting non-NEM rates. CPUC rolled out NEM 2.0 across the IOUs over 2016-2017. Further reforms to
NEM are in progress as of August 2023.

5In the case of California, the California Public Utilities Commission (CPUC) publishes detailed system-
level data on all grid interconnected PV systems and LBNL uses these data in constructing the Tracking the
Sun database. As a result, coverage of the California market in the Tracking the Sun database represents
the universe of grid-connected systems, which in turn accounts for the vast majority of installed PV systems.
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Table 1. Summary Statistics for Processed Installer-level Data

Mean SD Min Max

Number of Installations 2.59 4.02 1 138
Total Installed Capacity (kW) 14.36 20.30 0.92 583.95
Market Share (%) 0.00 0.01 0.00 0.35
Market Share: Inside (%) 4.66 8.04 0.13 100.00
Average Installed Price (2013 $/W) 6.69 1.79 1.54 12.03
Average Hardware Cost (2013 $/W) 4.25 1.54 0.00 10.58
Own Experience: In-market (kW) 128.37 275.11 0.00 3643.05
Own Experience: Out-of-market (kW) 1184.95 2706.12 0.00 18 355.82
Rival Experience: In-market (MW) 11.12 10.49 0.13 52.00
Rival Experience: Out-of-market (MW) 253.10 97.41 81.79 444.24
Rival Experience: Same Manufacturer (MW) 24.02 28.72 0.00 108.49
Rival Experience: Other Manufacturer (MW) 240.19 99.24 66.61 445.04

N 17,852

Notes: This table presents summary statistics for the processed installer-level dataset
that I use in my empirical analysis. The unit of observation is at the installer-county-
quarter-level, so descriptive statistics pool observations across markets and quarters. Total
installed capacity in a quarter and the measures of firms’ own experience are in kilowatts
(kW), whereas rivals’ experience measures are in megawatts (MW), or 1000 kW.

residential systems with capacity exceeding 20 kW, and any residential systems for which I

do not observe the installed price or rebate information.6 I also exclude self-installed systems

as well as any systems owned by a third party.7

To estimate potential learning economies in installation-specific costs, it is necessary to

remove hardware costs from the installed price of residential PV systems as this cost com-

ponent happens upstream of installation firms. I acquire data on hardware costs associated

with specific residential installations in California from the CPUC.8 Though not a required

component of rebate applications, the CPUC collected these data directly from installers

and households during the CSI rebate application process. As a result, hardware cost data

are unavailable for systems in my processed data that did not apply for the CSI rebate or

otherwise did not report system hardware costs in their CSI rebate application. Coverage is

6I choose to remove residential systems exceeding 20 kW in capacity as these are outliers likely associated
with large condominium buildings. Dropping observations with missing pricing information mostly excludes
observations prior to 2004.

7Third party ownership (TPO) in the residential PV market is a model that first emerged in California
in 2007 and peaked several years later in 2012. The model is analogous to leasing a consumer product in
other markets, where households sign a lease or power purchase agreement (PPA) with a third party solar
company who owns the system and collects any available subsidies. While many installation firms in my
final estimation dataset offer TPO options, I am unable to include this market in my analysis due to a lack of
reliable data on the terms of TPO leases or PPAs. Any impacts on the TPO market or interactions between
the household ownership market and the TPO market are therefore missing from my empirical analysis.

8I thank Galen Barbose from LBNL for making these data available to me and the CPUC for allowing
me to use these data in my empirical analysis.
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most complete for the period 2008-2013, which corresponds to the main period of the CSI: I

am able to successfully match non-zero hardware costs to over 79% of systems in the broader,

processed LBNL data for California during this period. Given the importance of observing

hardware costs in my empirical analysis, I subset the processed system-level data to include

only those installations with valid hardware cost data that occurred between 2008 to 2013.

Before doing so, I use system-level data for the full period of 2000-2021 to determine

the cumulative production of each installer within each county, where I measure cumulative

production in terms of total installed system capacity, as well as the first and last quarter that

an installer operates in a given county in the data.9 This allows me to not only determine

installation firms’ cumulative experience operating in specific markets, but also identify firms

that enter or exit specific markets during the main period of my analysis, 2008-2013. For

each installer that I observe operating during 2008-2013, I then aggregate several fields from

the system-level data to the county-quarter level, including average installed price per watt

of system capacity, total installed capacity, average rebate per watt available to installers

customers, and average hardware cost per watt.10 I also calculate the average PV module

efficiency, the number of distinct PV module types, and the name of the modal PV module

manufacturer installed by a given installation firm at the county-quarter level.

The final installer-level dataset includes roughly 17,000 observations representing over

50,000 individual installations by 1,800 unique installers, which together operate across 44

California counties over 24 quarters. I present descriptive statistics for the main installer-

level variables in Table 1. In addition to the main data sources that I discuss above, I bring

in data from the US Census Bureau’s American Community Survey (ACS) and Google’s

Project Sunroof to calculate the number of owner-occupied housing units that are suitable

for solar adoption for each county-quarter in my data, which I use to estimate market shares

each period. Additional data used in my analysis include demographic data from the ACS

public use microdata samples (PUMS) for 2008-2013, which I use to estimate preference

heterogeneity in my demand model; wage data from the Quarterly Census of Employment

and Wages, which provide county-quarter-level wages for installation-adjacent fields for use

as demand instruments; and retail electricity rates from the US Energy Information Admin-

istration’s Form-861, which in combination with potential solar output data from the World

Bank Group’s Solar Atlas allow me to estimate households’ NEM benefits. See Appendix B

for further discussion of the data sources that I use to construct the main estimation data.

9I use zip code to county crosswalk files from the US Department of Housing and Urban Development to
map zip codes to counties, which serve as the spatial definition of a market in my setting.

10I normalize installed prices and rebates by system capacity as this allows for consistency across instal-
lations of various sizes.
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Figure 3. California Residential PV Installation Activity, 2004-2013

Notes: This figure shows time series variation in several measures of activity for the California residen-
tial photovoltaic (PV) installation industry over the period 2004-2013, including cumulative installed
capacity in megawatts (MW) (top left), total revenue in million 2013 US dollars (USD) (top right), the
statewide Herfindahl-Hirschman Index (HHI) based on installed capacity (bottom left), and the number
of statewide incumbent firms (bottom right). Data are for rooftop, household-owned installations and
are taken from the Lawrence Berkeley National Lab’s “Tracking the Sun” report public data file, which
I discuss in detail in Section 3.1 (Barbose et al., 2022).

3.2 Descriptive Evidence

I begin my analysis of the supply-side implications of consumer subsidies by using my data to

explore aggregate trends in the California residential PV industry around the period of the

CSI. Figure 3 shows time series variation in several key measures of activity in the residential

PV installation industry for the period 2004-2013, which corresponds to the main period of

the CSI as well as the three years prior to the CSI for which I reliably observe industry

data. As is the case throughout my empirical analysis, these aggregate trends focus on the

household-owned, rooftop PV industry.

Similar to the rest of the global solar industry, the California PV industry experienced

dramatic growth starting in the mid-2000s. As is clear from Figure 3, much of the observed

growth in the California residential PV industry occurred during the main period of the CSI:

from the start of 2007 to the end of 2013, total installed residential PV capacity increased
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nearly 10-fold, from 60 to 600 MW. Unsurprisingly, this period of rapid growth in residential

PV capacity saw corresponding growth in the PV installation industry. Figure 3 shows

time series variation in statewide installation revenue and the total number of operating

installation firms in the state, both of which increased rapidly during the main period of the

CSI. Overall, installation industry concentration is low during this period, with a statewide

Herfindahl-Hirschman Index (HHI) that ranges between 100 and 540 between 2007 and 2013.

While the trends in Figure 3 are suggestive, it is difficult to determine the role that

California’s PV policy environment played in driving the observed growth in the PV in-

stallation industry from aggregate time series data. Fortunately, it is possible to leverage

plausibly-exogenous variation in PV subsidy policy across space and time to examine the

possible impact of PV subsidies on growth in the installation industry. In particular, I use

the variation across counties and quarters in CSI rebate levels shown in Figure 2 to esti-

mate the relationship between the number of installation firms that enter a county and the

generosity of consumer subsidies in that county in the quarter of entry. Since rebate levels

depend on the history of past installations and unobserved factors that affect adoption—and

in turn firm entry—may be correlated over time, I control for county-specific time-varying

determinants of firm entry using a county-by-year fixed effect. Figure 4 shows the estimated

relationship between the average number of entrants in a county and the CSI rebate level over

the main period of the CSI, 2007-2013: there exists a strong, positive relationship between

the CSI rebate level and the number of installation firms entering a market.11

The relationship in Figure 4 indicates that the CSI—and PV adoption incentives more

broadly—likely contributed to the observed growth in the California PV installation indus-

try; however, it is impossible to quantify the impact of these policies on market size and

installer market structure from this result alone. Moreover, this result sheds little light on

the underlying mechanisms through which the CSI and other PV adoption incentives served

to expand the PV installation industry. In order to more precisely analyze the impact of

consumer subsidies on the PV installation industry, including the mechanisms through which

these impacts operate, I develop a model of PV installer entry and exit.

11The county-by-year fixed effect accounts for annual, market-specific variation in entry rates and ag-
gregate demand that would influence the level of the CSI rebate. The relationship shown in Figure 4
therefore accounts for mean and county-specific, time-varying unobservables affecting entry rates and lever-
ages plausibly-exogenous variation in county-level CSI rebates driven by IOU service territory boundaries,
cumulative installed capacity in other counties within the same IOU service territory, and the cumulative
installed capacity cutoffs in the CSI rebate schedule. This approach is similar to others in the literature
(Bollinger and Gillingham, 2012; Hughes and Podolefsky, 2015; Ito, 2014).
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Figure 4. Average County-level Entry and CSI Rebate Levels, 2007-2013

Notes: This figure shows the estimated relationship between the average number of entrants in a county
and the California Solar Initiative (CSI) rebate level over the main period of the CSI, 2007-2013. The
figure shows the mean number of quarterly entrants at each CSI rebate level observed in the data,
conditional on a county-by-year fixed effect.

4 Model: Entry and Exit with Endogenous Learning-by-Doing

In this section, I introduce a model of firm entry, exit, and quantity-setting based on the

theoretical framework for dynamic oligopoly of Ericson and Pakes (1995).

In each period t and market m ∈ {1, . . . ,M}, there are j ∈ {1, . . . , Jmt} incumbent firms

that face a set of static consumers i ∈ {1, . . . , Nmt} who demand differentiated solar PV

installation services (Section 4.1). Incumbents dynamically choose a quantity of installations

to provide conditional on their marginal costs (Section 4.2) and their beliefs of future learning

(Section 4.3). Incumbent firms then choose whether to exit by comparing their expected

discounted future profits with an idiosyncratic scrap value while a market-specific pool of

potential entrants, j ∈ {1, . . . , N̄m}, make one-shot entry decisions based on their expected

discounted future profits and an idiosyncratic cost of entry (Section 4.4). At the end of each

period, entry and exit decisions are implemented and the state evolves to the next period

(Section 4.5). Firms’ strategies lead to a Markov Perfect Equilibrium, which I assume is

well-approximated by a Moment-based Markov Equilibrium concept (Section 4.6).

In practice, I define a discrete time period as a quarter and a market as a county. Firms

have an infinite horizon and share a discount factor, β.

Incumbent installer j operating in market m at time t is differentiated by its state, which
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includes a common knowledge component sjmt and a private component. The latter includes

a shock to a firm’s private selloff value, ϕjmt as well as a private, unobserved productivity

shock, κjmt. The former is defined by the vector

s′jmt =
[
Ejmt ξjmt hjmt

]
where to reflect learning-by-doing Ejmt is the installer’s market-specific experience; ξjmt is a

market- and time-specific measure of installation service quality, which I derive in practice

from the demand system; and hjmt is a market- and time-specific measure of hardware input

costs. The state of market m at time t, smt, is therefore the union of all incumbent firms’

common knowledge states and two additional aggregate state variables which vary across

markets over time: an aggregate demand state, dmt, and the market-level inclusive value,

Imt, which account for revenue potential and the intensity of competition among firms in

a given market, respectively (Aguirregabiria et al., 2021). Potential entrants observe the

market state and are differentiated by an idiosyncratic, private shock to entry costs, ωjmt.

4.1 Demand for Solar Installations

I follow the random coefficient nested logit (RCNL) model of Brenkers and Verboven (2006)

and Grigolon and Verboven (2014) to estimate consumer demand. The exposition of this

model in my setting is inspired by Miller and Weinberg (2017). Incumbent firms in each

period and market face a set of idiosyncratic, static consumers i ∈ {1, . . . , Nmt} who demand

solar PV installation services. While there is evidence to suggest that consumers are forward-

looking when purchasing PV systems, I assume that a static demand model provides a

reasonable approximation to consumer behavior.12 Each consumer purchases a solar PV

installation from one of the observed incumbents (j ∈ {1, . . . , Jmt}) or chooses to not install

solar PV in this period (j = 0). The conditional indirect utility that consumer i receives

from choosing installer j in market m in period t is

uijmt = αpi (pjmt − rjmt) + α′
iXjmt + ξjmt + ξ̄j + ξ̄t + ε̄ijmt (1)

where Xjmt is a K × 1 vector of observable product (firm) characteristics; pjmt is the retail

price per watt of system capacity; rjmt is a market-time-varying rebate or subsidy per watt

of system capacity; ξjmt is a firm’s market-time-specific unobserved quality; ξ̄j allows the

mean valuation of unobserved product characteristics to vary freely by product; ξ̄t allows

the mean valuation of the indirect utility from installation to vary freely over time; and ε̄ijmt

12I develop and estimate a dynamic model of demand in Appendix C and find evidence to suggest that
my static demand estimates are a reasonable reduced form for demand.
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is an idiosyncratic shock to preferences. I normalize prices and rebates by system capacity

to ensure consistency when aggregating these variables across systems of different sizes.

I decompose the idiosyncratic preference shock using the distributional assumptions of

the nested logit model following Berry (1994). For each market and in each period, define

two groups, g ∈ {0, 1}, where g = 1 includes the full set of incumbent installers and g = 0

the no-installation option. Then

ε̄ijmt = ζigmt + (1− η)εijmt

where εijmt is independent and identically distributed (i.i.d.) Type 1 Extreme Value, ζigmt

has the unique distribution such that ε̄ijmt is i.i.d. Type 1 Extreme Value, and 0 ≤ η < 1 is

a nesting parameter that proxies for the degree of preference correlation within a group. I

normalize the indirect utility of non-installation such that ui0,mt = εi0mt

I parameterize taste heterogeneity as follows: αpi = αp/yi and αki = αk + σk log(yi) for

product attribute k, where αp, αk, σk are parameters to be estimated and yi is observed

consumer income.13 It is therefore possible to re-write conditional indirect utility as

uijmt = υjmt + µijmt + ζigmt + (1− η)εijmt

where

υjmt ≡ α′Xjmt + ξjmt + ξ̄j + ξ̄t and µijmt ≡
αp

yi
(pjmt − rjmt) + σ′Xjmt log(yi)

I express the market share of installer j in market m in period t as

msjmt =
1

Nmt

Nmt∑
i=1

exp
(
(υjmt + µjmt)/(1− η)

)
exp

(
Iigmt/(1− η)

) exp Iigmt
exp Iimt

(2)

where Iigmt and Iimt are the McFadden (1977) inclusive values.14

4.2 Incumbent Cost Structure and Payoffs

After observing the market state, smt, incumbents privately observe a firm-, market-, and

time-specific random productivity shock, κjmt and choose a quantity of installations to pro-

13This parameterization of αp
i approximates a Cobb–Douglas-style indirect utility function and is taken

from Berry et al. (1999).
14By normalizing the mean indirect utility of the outside good to zero, Ii0mt = 0. The inclusive value of

the inside goods is Ii1mt = (1− η) log
∑Jmt

j=1 exp
(
(δjmt + µijmt)/(1− η)

)
and the inclusive value of all goods

is Iimt = log(1 + exp Ii1mt). Thus, to get the McFadden (1977) inclusive value at the market-time-level, I

simply sum across individuals in the market: Imt =
∑Nmt

i=1 Iimt.
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vide, qjmt, at cost mcj(smt) per watt of PV system capacity. Firms marginal production cost

takes the following form:

mcj(smt; θ
c) = hjmt + wj(smt; θ

c) + κjmt (3)

where hjmt is a firm’s market-time specific marginal hardware cost, which is assumed to

be exogenous; wj(smt; θ
c) is a firm’s installation-specific marginal cost, which accounts for

learning-by-doing by allowing installation costs to be a parametric function of accumulated

experience—which enters smt—with parameters θc; and κjmt is a firm’s unobserved produc-

tivity shock.15 Installation-specific marginal cost, wj(smt; θ
c), captures costs associated with

the sale, design, permitting, and construction for specific PV systems. Each term in (3) is

measured in terms of per watt of system capacity.

I parameterize the relationship between accumulated production experience and installation-

specific marginal costs following an unbounded learning model that is relatively standard in

the learning-by-doing literature (Benkard, 2000; Covert and Sweeney, 2022; Levitt et al.,

2013; Thornton and Thompson, 2001). Specifically, the relationship between installation

costs and experience follows a power rule:

wj(smt; θ
c) = c0 ×

(
Ẽj
(
smt; θ

E
))γ

(4)

where Ẽj(smt; θ
E) is firm j’s “effective” experience in market m in period t, which follows

some parameterized function of the firm’s own experience and the experience of its rivals;

γ is a learning exponent that defines learning economies; c0 is a parameter that scales

effective experience into dollar amounts; and θc = (c0, θ
E, γ) collects the production cost

parameters. Defining marginal installation cost as a function of effective experience allows

me to test different models of experience accumulation. For example, one model of experience

accumulation that I test is as follows:

Ẽj
(
smt; θ

E
)
= Ejmt + θE1

(∑
m

∑
k ̸=j

Ekmt

)
(5)

where I allow industry cumulative production—the summation in the second term—to have

a different and potentially incomplete marginal contribution to firm j’s effective experience

than firm j’s own cumulative production. Note that the experience parameter θE1 is nor-

15Where applicable throughout my exposition of the model, I index functions by j to illustrate that the
corresponding function values are firm-specific, e.g., mcj(smt). Since the state vector smt includes each firm’s
state, I use this notation to avoid duplicating a firm’s state, sjmt, in a function’s arguments.
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malized with respect to the marginal contribution of a firm’s own experience.16 I report

estimated experience parameters, θE, from several different models of experience accumula-

tion in Section 6.

An incumbent active in period t in market m therefore earns product market profits:

πj(smt, qjmt; θ
c) =

(
pj(smt, qjmt)−mcj(smt; θ

c)
)
qjmt

where pj(smt, qjmt) is firm j’s market-time-specific price per watt, which is defined by the

inverse demand curve corresponding to the demand model outlined in Section 4.1.

The ex-ante value function for incumbent j in market m at time t prior to the realization

of ϕjmt is given by

Vj(smt) = Eϕ
[
πj(smt) + max

{
ϕjmt, βE

[
Vj(smt+1)|smt, q∗mt

]}]
= Eϕ

[
πj(smt) + max

{
ϕjmt, CVj(smt)

}] (6)

where CVj(smt) = E
[
Vj(smt+1)|smt, q∗mt

]
denotes the continuation value, which equals the

expected discounted future stream of profits with the expectation taken over the transition

of the state variables; q∗mt is the vector of optimal quantities chosen by incumbents in the

market; and β is a common discount factor.

4.3 Product Market Game

Incumbent firms compete in the product market each period by choosing a quantity of

differentiated installation services to provide. In particular, incumbents choose quantities

in order to maximize the sum of current period profits and their expected continuation

value, where expectations are taken over firms’ beliefs of the evolution of the market state.

Incumbent firm j in market m in period t has the following objective:

max
qjmt

(
πj(smt, qjmt) + β

∫
Vj(smt+1)dF (smt+1|smt, qmt)

)
where F (smt+1|smt, qmt) is the transition kernel for the state smt conditional on qmt, the

vector of quantity choices by incumbent firms in the market.

The optimal quantity choice for firm j in market m in period t will satisfy the following

16In practice, I further normalize all experience terms by the total industry experience in the first period of
the estimation sample, the first quarter (Q1) of 2008. This ensures the readability of the effective experience
parameters, θE , and improves numerical stability in estimation.
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first-order condition:

0 =
∂

∂qjmt
πj(smt, qjmt)︸ ︷︷ ︸

marginal static profits

+
∂

∂qjmt
β

∫
Vj(smt+1)dF (smt+1|smt, qmt)︸ ︷︷ ︸
dynamic “markdown”

(7)

where the first term is the standard, static quantity-setting first-order condition and the sec-

ond term captures both the incentive to raise production today to reduce future production

costs as well as any strategic considerations regarding the impact of production today on a

firm’s rivals.17 The first term in firm j’s first-order condition can be written as:

∂

∂qjmt
πj(smt, qjmt) = pj(smt, qjmt) +

∂pj(smt, qjmt)

∂qjmt
qjmt −mcj(smt) (8)

which is the standard, static quantity-setting first-order condition. This term accounts for

the impacts of a firm’s quantity choice on its benefits and costs in the current period: it

trades off the marginal benefit and marginal cost of changes in quantities, accounting for the

direct benefit and cost of producing a marginal unit in addition to the inframarginal impact

of reducing the equilibrium price on all units it supplies.

The dynamic markdown term describes the marginal effect of higher prices on a firm’s

value function, or discounted future profits. As noted by Berry and Pakes (2000) and Covert

and Sweeney (2022), a change in a firm’s choice of qjmt will only affect the state transition

distribution, F (smt+1|smt, qmt), through the evolution of experience, Ejmt, not the value

function V (·) itself. Noting further that for any possible value of qmt, dF (smt+1|smt, qmt) > 0,

I can simplify the dynamic markdown term as follows:

∂

∂qjmt
β

∫
Vj(smt+1)dF (smt+1|smt, qmt)

= β

∫
Vj(smt+1)

∂

∂qjmt
dF (smt+1|smt, qmt)

= β

∫
Vj(smt+1)

(
∂

∂qjmt
dF (smt+1|smt, qmt)

dF (smt+1|smt, qmt)

)
dF (smt+1|smt, qmt)

= βE

[
Vj(smt+1)

(
∂

∂qjmt
dF (smt+1|smt, qmt)

dF (smt+1|smt, qmt)

)∣∣∣∣∣smt, qmt
]

(9)

The result is an intuitive, simplified form for the second term in firms’ quantity-setting first-

order condition. As shown above, firm j’s dynamic markdown in market m in period t is

17I follow the terminology of Covert and Sweeney (2022) and refer to the second term as the “dynamic
markdown.”
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its expectation of the benefits at a given realization of the future state, smt+1, multiplied by

the marginal change in the probability that this state is realized resulting from a change in

that firm’s quantity choice, qjmt. Combining these forms for the marginal static profits and

dynamic markdown provides me with a feasible approach to writing firms’ quantity-setting

first-order condition as a function of data and estimable parameters. I outline my approach

to doing so, including any necessary additional assumptions, in Section 5.

4.4 Exit and Entry

At the start of each period, incumbent firms first observe the market state, smt; draw a private

productivity shock, κjmt; and then compete in the product market as outlined above. After

product market decisions are implemented, incumbents draw a private scrap value, ϕjmt.

The optimal exit policy follows a threshold form: a firm j will exit market m in period t

if the scrap value that it draws is greater than its continuation value, CVj(smt). The scrap

value is distributed i.i.d., so the firm exits with probability pxj (smt):

pxj (smt) ≡ Pr
(
ϕjmt > CVj(smt)

)
= 1− Fϕ

(
CVj(smt)

)
where Fϕ is the conditional distribution function (CDF) of the distribution of ϕjmt. In

practice, I assume that ϕjmt is distributed i.i.d. exponential with scale parameter 1/σϕ, i.e.

ϕjmt
i.i.d.∼ Exponential(1/σϕ). This implies an exit probability of the following form:

pxj (smt;σϕ) = exp

(
−CVj(smt)

σϕ

)
(10)

At the same time that incumbents draw private scrap values, N̄m potential entrants

observe the common knowledge state smt and a private i.i.d. entry cost, ωjmt, before making

a one-shot entry decision. If potential entrant j ∈ {1, . . . , N̄m} chooses not to enter, it

disappears with a payoff of zero; if it enters, it pays its entry cost and becomes an incumbent

in the next period. I assume that entrants are endowed with random values of the non-

deterministic state variables, quality and hardware cost, where values are drawn from the

empirical distribution of observed states. Entrants start with zero experience, Ejmt = 0.

The optimal entry policy also follows a threshold form: potential entrant j in market m

in period t enters the market if their entry cost, ωjmt, is lower than the value of entering:

ωjmt ≤ V Ej(smt) ≡ βE
[
Vj(smt+1)|smt, χejmt = 1

]
where χejmt equals 1 if potential entrant j chooses to enter market m in period t and 0
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otherwise and where the expectation is over the potential entrants information set at the

time of the one-shot entry decision, which includes the common knowledge state, smt. Given

that ωjmt is i.i.d., the probability that potential entrant j in market m in period t enters is:

pej(smt) ≡ Pr
(
ωjmt ≤ V Ej(smt)

)
= Fω

(
V Ej(smt)

)
where Fω is the CDF of the distribution of ωjmt. I assume that ωjmt is distributed i.i.d.

exponential with scale parameter 1/σω, i.e. ωjmt
i.i.d.∼ Exponential(1/σω). This implies an

entry probability of the following form:

pej(smt;σω) = 1− exp

(
−V Ej(smt)

σω

)
(11)

4.5 State Transitions

I assume that hardware cost (hjmt) and installation quality (ξjmt) are exogenous and evolve

stochastically over time according to a first-order Markov process. In the case of hardware

costs, this assumption implies that PV installers are price-takers in the upstream market

for PV system inputs, a reasonable assumption based on the number of PV module and

inverter manufacturers relative to the number of installers. The assumption of a stochastic

transition process for quality is perhaps tenuous; however, such a process could result from

random outcomes to investment in quality. While it is possible—both theoretically and

indeed computationally—to endogenize the quality process through investment decisions,

this dynamic is not my primary focus and there are non-trivial data limitations to doing so,

namely the lack of data on investment and installation quality.

The remaining state variables, aggregate demand (dmt), market-level inclusive value (Imt),

and experience (Ejmt), are endogenous and evolve over one period as a result of the demand

model outlined in Section 4.1 and firm quantity-setting actions outlined in Section 4.3.

4.6 Equilibrium

A Markov-Perfect Equilibrium of the model in a given market m in period t includes a

set of policies governing production quantities, exit, and entry
(
qmt, p

x
j (smt), p

e
j(smt)

)
as

well as value functions Vj(smt), and prices pjmt such that the firms’ production, exit, and

entry decisions satisfy (7), (10), and (11). Equilibrium prices are generated by the inverse

demand function and set current demand equal to current supply. Moreover, incumbent value

functions satisfy (6) in equilibrium and all firms employ the equilibrium policy functions

to form expectations. Equilibrium existence follows from Ericson and Pakes (1995) and

Doraszelski and Satterthwaite (2010).
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The state variable smt is a high-dimensional object due to the large number of firms in the

industry. The above definition of Markov-Perfect Equilibrium assumes that firms keep track

of the state variables of every rival, arguably a strong assumption in a setting in which there

can be over 100 active incumbents in a given market. To reduce the computational burden

of estimating model primitives and solving for the model equilibrium, I assume that firms do

not keep track of the state variable of every rival, but instead track market-level moments of

rivals’ state variables each period. Ifrach and Weintraub (2017) provide a detailed treatment

of this approach, which the literature refers to as a Moment-based Markov Equilibrium.

This approach is similar in spirit to the oblivious equilibrium concept (Benkard et al., 2015;

Weintraub et al., 2008), which approximates the Markov-Perfect Equilibrium in industries

with many firms and has been widely employed in the empirical literature (Barwick et al.,

2021; Gerarden, 2022; Jeon, 2022; Vreugdenhil, 2023).

A remaining issue in the equilibrium concept that I apply in this context is nonstationarity

in the regulatory environment. While there are a number of overlapping adoption subsidies

during the study window, several of which evolve from period to period, explicitly mod-

eling firms’ beliefs regarding the distribution of future subsidy environments substantially

complicates equilibrium computation. Thus, I follow standard practice in the literature and

assume that firms behave as if changes to existing subsidy policy are unanticipated, one-time

changes that are not repeated in the future (Aguirregabiria et al., 2021; Ryan, 2012). As

noted by Barwick et al. (2021), one approach to proxy for dynamic regulatory environments

is to use lower discount rates so that future payoffs are less relevant for decisions in the

current period. I use this approach to test the robustness of my assumption that subsidy

changes are perceived as permanent in my setting.

5 Estimation Strategy

In this section, I outline the empirical approach that I take to recover key model parameters.

The main primitives of the model that I aim to recover include: the demand system for

rooftop solar PV installations, the installation-specific marginal cost function, the distribu-

tion of scrap values, and the distribution of entry costs.

5.1 First Stage: Demand Estimation, Exit Policies, and States

5.1.1 Demand Estimation

Demand estimation follows the nested fixed point procedure of Berry et al. (1995) and best

practices for differentiated demand estimation outlined by Conlon and Gortmaker (2020) as
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adapted to the RCNL model of Brenkers and Verboven (2006) and Grigolon and Verboven

(2014). The approach derives a generalized method of moments (GMM) estimator from the

moment condition E[Z ′
Dξ(θ

D
0 )] = 0, where θD0 = (αp, α

′, σ, η) is the vector of population

demand parameters, ξ(θD) is the vector ξjmt that solves the system of market shares defined

by (2) for a given set of parameters θD, and ZD is a conformable matrix of valid instruments.

This definition of ξ(θD) implies that this vector is the structural error term if evaluated at

the population parameters (i.e., ξjmt = ξ(θD0 )). The resulting GMM estimate is

θ̂D = argmin
θD

(
ξ̂(θD)′ZD

)
W−1

(
Z ′
Dξ̂(θ

D)
)

where ξ̂(θD) is the sample analog of ξ(·) and W is a positive definite weight matrix.

The installer characteristics that enter Xjmt include a measure of the efficiency of PV

modules an installer offers, the number of distinct PV module types an installer offers, and

the quarterly average electricity price in a county. Including a firm fixed effect, ξ̄j, in (1)

absorbs time-invariant installer characteristics and the quarter fixed effect, ξ̄t, accounts for

aggregate trends in mean preferences for solar over time. In estimation, I take 200 draws of

household income from the annual American Community Survey PUMS data per county-

quarter.18

I adopt many of the best practices for differentiated demand estimation recommended

by Conlon and Gortmaker (2020). I employ the standard two-step procedure for GMM

estimation, adjusting the weight matrix in the second step to account for clustering at the

county-level. I solve the system of market shares defined by (2) using SQUAREM with

a dampened version of the Berry et al. (1995) contraction mapping based on Grigolon and

Verboven (2014). I calculate standard errors using the GMM formula, clustering observations

at the county-level to allow for within-market correlation in unobserved quality.

Identification of the demand parameters θD requires instruments for the parameter on

price and each of the nonlinear parameters. The standard price endogeneity issue applies in

this setting: prices are likely correlated with the structural error term as firms make product

market decisions with knowledge of unobservable product- and market-specific consumer

valuations. As outlined in Berry and Haile (2014), consumer heterogeneity in preferences

for product characteristics leads to a simultaneity problem. This is due to the fact that

the mean utilities that equate observed market shares to model-predicted shares depend

18I calculate per-capita household income as the total income divided by the number of household members.
Since the ACS PUMS data are only available at an annual level, I draw from the same annual sample for
each county-quarter within the same calendar year. County of residence is masked for select household
observations from a subset of less populous California counties. For these counties, I draw from the full
sample for the state in the relevant time period.
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on the parameters governing consumer heterogeneity. In this setting, parameters that lead

to consumer preference heterogeneity include the income terms (αp and σ) and the nest

parameter (η).

The first set of demand instruments that I use addresses the price endogeneity issue

and includes the CSI rebate per watt and the county-level electrician/roofing wage rates,

each of which represents a plausible marginal cost shifter. The CSI rebate, which varies

across market and time and is used elsewhere in the literature estimating solar installation

demand (Gillingham and Tsvetanov, 2019; Pless and Van Benthem, 2019), is analogous to a

shift in firms’ supply curve holding demand fixed assuming the standard statutory-incidence

irrelevance result given that I model consumers as facing post-incentive prices. Electricians’

and roofers’ wages also serve as exogenous cost shifters, plausibly affecting demand only

through their effect on the price of installing solar. I augment these price instruments with

an additional set of instruments that includes the non-price characteristics of other goods in

a given market, i.e., X−jmt. This assumes that non-price characteristics of all products are

mean-independent of quality shocks, ξjmt, which is a relatively standard assumption in the

literature starting with Berry et al. (1995).

The second set of demand instruments identifies the nested logit parameter and includes

the number of active firms within a given market and the lagged quantity of installations an

installer completed in other counties. Identification of the nest parameter requires exogenous

variation in the conditional shares of the inside goods.19 The number of firms (or products

in other settings with multi-product firms) is a relatively standard instrument in nested

logit models and should be negatively correlated with the within-group share. The number

of installations an installer finishes in other counties directly frees up labor that can be

moved across counties, which also influences the within-group share. This instrument is

used elsewhere in the literature estimating solar demand (Bollinger and Gillingham, 2019).

The final set of demand instruments identifies the parameters governing consumer hetero-

geneity in preferences for characteristics, σ. Assuming that the structural error term, ξjmt, is

mean independent of income and product characteristics, identification of these parameters

comes from correlation between local demographics and product shares. In particular, I fol-

low Miller and Weinberg (2017) and use mean income interacted with the observed product

characteristics in Xjmt, where mean income is calculated for each county-quarter using the

19To see this, consider a version of the RCNL model presented in Section 4.1 that eliminates individual
level heterogeneity. This reduces the RCNL model to the nested logit model and yields an equation for
market shares that is linear in its parameters:

log(msjmt)− log(ms0mt) = αp(pjmt − rjmt) + α′Xjmt + ξ̄j + ξ̄t + η log(m̄sjmt|g) + ξjmt

where m̄sjmt|g = msjmt/
∑Jmt

j=1 msjmt is the conditional within-group share.
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200 draws from the American Community Survey PUMS.

5.1.2 Exit Policy Function

The exit policy function defines the equilibrium exit behavior of firms conditional on the

industry state. I estimate firms’ exit policy function using a logit regression:

Pr(χxjmt = 1|smt) =
exp

(
hj(smt)

)
1 + exp

(
hj(smt)

)
where χxjmt equals 1 if firm j exits market m in period t and 0 otherwise and hj(smt) is a

flexible function of the states.

Given that firms’ exit probabilities approximate endogenous equilibrium objects, it is

important to obtain consistent estimates of these functions in the first stage as this ensures

the consistency of my second stage estimates of the dynamic parameters. I therefore follow

the data-driven approach of Gerarden (2022) to determine the functional form of hj(smt)

that trades off flexibility with the issues associated with overfitting. In particular, I estimate

a logit model of the discrete exit decision with a full set of candidate regressors, hj(smt),

via penalized maximum likelihood.20 This first step identifies a set of non-zero regressors,

h̃j(sjmt), which I then use in a second step to estimate a logit model of exit via maximum

likelihood. Additional information is available in Appendix D. I denote the resulting fitted

exit probabilities as p̂xjmt.

5.1.3 State Space

As discussed in Section 4.6, the state variable smt is a high-dimensional object due to the

large number of firms in the industry. In line with the Moment-based Markov Equilibrium

concept of Ifrach and Weintraub (2017), I assume that firms track moments of the state

variables of their rivals rather than the state variables of every rival. In particular, I assume

that firms track within- and out-of-county averages of other firms’ hardware cost (i.e., h̄kmt

and h̄klt ∀k ̸= j, l ̸= m) and other firms’ quality (i.e., ξ̄kmt and ξ̄klt ∀k ̸= j, l ̸= m). In

the case of experience, firms track the total experience of other firms in a given market

(i.e., Ēm
jmt =

∑
k ̸=j Ekmt) as well as the total experience of other firms in other markets (i.e.,

Ēo
jmt =

∑
l ̸=m

∑
k ̸=j Eklt). Firms track their own state variables, (Ejmt, ξjmt, hjmt) in addition

to these moments of rivals’ state variables.

20Candidate regressors include quadratic polynomials of the full set of state variables and their complete
set of pairwise interactions as well as county and quarter fixed effects. I estimate the penalized logit via
LASSO and select the sole tuning parameter via k-fold cross validation.
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The aggregate states described in Section 4 remain unchanged. An aggregate demand

state, dmt, accounts for market-time variation in revenue potential. The market-level inclu-

sive value, Imt, measures the intensity of competition among firms in a given market and is

calculated as the total inclusive value of all goods in a market-period based on the demand

model. The result of these assumptions on the state space is an 11-dimensional state vector

for each firm, which represents a substantial reduction in the dimensionality of the model.

5.1.4 State Transitions

When firms make entry, exit, and quantity decisions, they consider both their current payoffs

as well as the value of operating in future periods, which is a function of future state variables;

rivals’ entry and exit decisions; and rivals’ production decisions. As noted, I assume that

the exogenous state variables—hardware cost, hjmt, and installation quality, ξjmt—follow a

first-order Markov process rather than explicitly modelling firms’ beliefs. Following Aguirre-

gabiria and Mira (2007) and much of the dynamic games literature, I model the evolution of

the two exogenous states as first-order autoregressive (AR(1)) processes. I allow for market-

specific intercepts in estimating the AR(1) transition processes to account for substantial

heterogeneity in conditions across counties. The transition process for experience is a deter-

ministic function of a firm’s current experience level and quantity choice, with new entrants

having an experience level of 0.

The aggregate states, aggregate demand and inclusive value, are complicated objects

that are determined by equilibrium in the product market game. Following other work

in the literature (see Aguirregabiria et al. (2021)), I assume that firms’ beliefs over the

transition of the aggregate states follow AR(1) processes similar to that for the exogenous

states. The assumption that firms’ beliefs over the transition of aggregate demand follow an

AR(1) process is relatively standard in the literature. Gowrisankaran and Rysman (2012)

and Barwick and Pathak (2015) make similar assumptions regarding agents’ beliefs over the

transition of inclusive value state variables.

5.2 Second Stage: Learning, Exit, and Entry Parameters

I now turn to my approach to recovering the dynamic parameters of the model, which include

the production cost parameters that govern learning (θc), exit parameter (σϕ), and entry

parameter (σω). I begin by outlining my approach to approximating firms’ value functions

before turning to the main estimating equations for the learning, exit, and entry parameters.

As noted in my discussion of the model, β is a quarterly discount factor common to all firms.
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I assume a quarterly discount factor that translates to an annual discount factor of 0.875.21

5.2.1 Value Function Approximation

In light of the fact that the conditions for optimal quantity-setting, exit, and entry defined by

(7), (10), and (11) all depend on Vj(smt), estimation of the target structural parameters re-

quires solving for the unknown value function. Since scrap values, ϕjmt are i.i.d. exponential,

it is possible to write the value function prior to the realization of ϕjmt as

Vj(smt) = Eϕ[πj(smt) + max{ϕjmt, CVj(smt)}]

= πj(smt) + pxj (smt)Eϕ[ϕjmt|ϕjmt > CVj(smt)] + (1− pxj (smt))CVj(smt)

= πj(smt) + pxj (smt)σϕ + CVj(smt) (12)

where the final line follows from the memoryless property of the exponential distribution,

i.e., Eϕ[ϕjmt|ϕjmt > CVj(smt)] = σϕ + CVj(smt) as shown by Pakes et al. (2007).

Having obtained estimates of the static demand parameters, exit policy functions, and

state transition processes in the first step, it is possible to obtain a flexible approximation of

the value function implicitly defined by the Bellman equation (12) following recent work in

the dynamic games literature (e.g., Barwick et al. (2021)). In particular, given the smooth-

ness of the value function in this context, it is possible to approximate the value function

arbitrarily well using L basis functions blj(smt):

Vj(smt) ≃
L∑
l=1

λlb
l
j(smt) CVj(smt) ≃ β

L∑
l=1

λlE[blj(smt+1)|smt] (13)

where blj(smt) are basis functions of the state variables and λl are coefficients to be estimated.

Value function approximation is appealing in my setting for several reasons. First, given

the high dimensionality of the model’s continuous state space, conventional approaches that

rely on discretization of the states remain computationally-intensive and can produce non-

trivial approximation errors in this setting. Second, given that the value function implicitly

defined by the Bellman equation (12) is nonlinear in parameters, popular forward simulation

approaches are computationally-infeasible in this setting.22 I provide additional details on

my approach to value function approximation, including my approach to constructing basis

21This is the same discount factor that Gerarden (2022) assumes for solar panel manufacturers and is
similar in magnitude to that estimated by De Groote and Verboven (2019) for PV-adopting households.
This discount factor is similar to those applied in other contexts: for example Ryan (2012) assumes an
annual discount factor of 0.9.

22This non-linearity is due to the fact that static profits are a function of marginal production costs, which
are nonlinear in the learning parameters.
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functions of the state variables, approximating the expectation over the state transitions,

and estimating {λ̂l}Ll=1 in Appendix E. I report empirical relationships between the state

variables and a set of final value function estimates in Figure E1.

5.2.2 Production and Exit Cost Estimation

Since both production cost and exit parameters are functions of firms’ value functions—

which itself is a function of these target parameters—it is necessary to jointly estimate both

sets of parameters. I do so by deriving suitable moments from the conditions governing

optimal quantity setting and exit as functions of data and parameters, which I then use to

solve for the target parameters via non-linear GMM.

I re-express the condition for optimal quantity setting given in (7) as a function of pa-

rameters and data by combining the static markup (8) and dynamic markdown (9) with my

functional form assumptions for marginal productions costs (3) as follows:

0 = pjmt + (∆−1
mt)(j,j) ×msjmt − (hjmt + wj(smt; θ

c) + κjmt)

+ βE[Vj(smt+1;λ)× Ωj(smt, qmt)]
(14)

where

– pjmt, msjmt, and hjmt are the price per watt, market share, and hardware cost per watt

for firm j in market m in period t, each of which I take directly from the data;

– (∆−1
mt)(j,j) is the j-th diagonal element of the inverted matrix of own- and cross-price

derivatives of demand, ∆mt, estimated from the demand model in the first stage;

– wj(smt; θ
c) is firm j’s installation-specific cost per watt in market m in period t, which

is a function of firm j’s effective experience and parameters θc according to (4);

– κjmt is firm j’s unobserved productivity shock;

– Vj(smt+1;λ) is firm j’s value in market m in period t + 1, which I can approximate

as a function of expected state variables—conditional on current states and quantity

choices—and parameters λ as described above; and

– Ωj(smt, qmt) =
∂

∂qjmt
dF (smt+1|smt,qmt)

dF (smt+1|smt,qmt)
is the second term in the dynamic markdown that

captures the sensitivity of state transitions to firm j’s quantity choice.

Note that I omit function arguments for objects taken directly from the data or estimated

in the first stage in (14) for ease of notation.
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Two objects in (14) warrant additional discussion: Ωj(·) and κjmt. It is possible to write

the object Ωj(·), which describes the sensitivity of state transitions to a firm’s quantity

choice, as a relatively simple function of data and parameters. Note that the only future

state variable directly affected by firm j’s current quantity decision is firm j’s own effective

experience state, which is a direct function of firms’ current and past quantity choices. I can

therefore write a closed-form for Ωj(·) by solving for the gradient of the transition probability

distribution of firms’ own effective experience with respect to their quantity choice. Define

the transition kernel for firm j’s effective experience state variable as dG(Ẽjmt+1|Et, qt),
where Et and qt are vectors of cumulative production and quantities for all incumbent firms

across all markets in period t. The closed form expression for dG(·) and therefore Ωj(·) will
vary based on the specific parametric model of experience accumulation that I assume. For

example, taking the model of experience accumulation defined by (5), I know that

dG(Ẽjmt+1|Et, qt) = (Ejmt + qjmt) + θE1

(∑
m

∑
k ̸=j

(Ekmt + qkmt)

)

Assuming this model of experience accumulation gives the following form for the sensitivity

of state transitions to firm j’s quantity choice:

Ωjmt ≡
∂

∂qjmt
dG(Ẽjmt+1|Et, qt)

dG(Ẽjmt+1|Et, qt)
=

1

(Ejmt + qjmt) + θE1

(∑
m

∑
k ̸=j(Ekmt + qkmt)

)
which I can plug into (14). This closed form expression allows me to calculate the expectation

in (14) for a given guess of the target parameters using data on current states and quantity

choices; estimated state transitions; and value function approximating coefficients, λ.

I now turn to the firm-specific, unobserved productivity shock, κjmt. From the model,

the implied values of unobserved productivity shocks across firms, markets, and periods,

can be computed as a function of the production cost and value function parameters to be

estimated, (θc, λ). I assume that the unobserved productivity shock for firm j in market m

evolves according to an AR(1) process, where the error

νjmt(θ
c, λ, ρ) = κjmt(θ

c, λ)− ρκjmt−1(θ
c, λ) (15)

is mean zero and independent such that

E
[
νjmt(θ

c, λ, ρ)
]
= 0 (16)
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where ρ is an additional serial correlation coefficient to be estimated. The above defines a

suitable moment from which I can recover estimates of the production cost parameters.

Relying on the moment given by (16) rather than moments from the unobservable pro-

ductivity shock, κjmt, is appealing as it explicitly accounts for potential serial correlation in

the productivity shocks. Serially correlated productivity is a common concern in the esti-

mation of production functions (Olley and Pakes, 1996). In the present context, ignoring

serial correlation would likely result in biased estimates of production cost parameters: firms

with serially correlated, positive productivity shocks are likely to accumulate greater lev-

els of experience while also having relatively low marginal production costs, resulting in an

over-estimate of overall learning without accounting for this correlation. Indeed, the existing

literature estimating passive learning finds substantial serial correlation (Argote and Epple,

1990; Benkard, 2000). Explicitly estimating the serial correlation coefficient on κjmt, ρ helps

to not only produce unbiased estimates of learning parameters, but also account for serially

correlated productivity shocks in counterfactual simulations in Section 7.

I derive a suitable moment condition for the estimation of the exit cost parameter, σϕ,

from the condition defining optimal exit. It is possible to form estimates of model-implied

exit probabilities given in (10) using the basis function approximations to firms’ continuation

values. I therefore aim to find the exit cost parameter that minimizes the sum of squared

differences between fitted exit probabilities estimated in the first stage and model-implied

exit probabilities:

min
σϕ

∑
j,m,t

(
p̂xjmt − exp

(
−CVj(smt;λ)

σϕ

)
︸ ︷︷ ︸

≡ψjmt(σϕ,λ)

)2

The moment condition that corresponds to the above nonlinear least squares problem is

E
[
∂ψjmt(σϕ, λ)

∂σϕ
ψjmt(σϕ, λ)

]
= 0 (17)

which has a closed form expression and defines a suitable moment from which I can estimate

the exit cost parameter.

Stacking the moment conditions (16) and (17) provides a means of jointly estimating

the target parameters, θ = (θc, ρ, σϕ). Note, however, that these moment conditions depend

on the value function approximating coefficients, λ, which are functions of a subset of the

target parameters (θc, σϕ). I therefore adopt an approach to jointly estimate the production

and exit cost parameters based on that of Sweeting (2013): for a given value of the target

parameters, I solve for the approximating coefficients that minimize violations of the Bellman
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equation and use these to estimate continuation values, which I use in turn to solve for the

next iteration of target parameters. I then iterate this procedure until a convergence criterion

is satisfied. Specifically, at a given iteration i and guess of the target parameters, θ̂
i
, I do

the following:

1. Solve for the value function approximating coefficients, λ̂i, for the current values of the

target parameters, θ̂
i
, and use these to calculate CV i

j (smt; λ̂
i).

2. Use the resulting values for CV i
j (smt; λ̂

i) to update estimates of the target parameters

via two-step GMM, with the GMM estimator θ̂
i+1

= argminθ Ψ(θ)′W−1Ψ(θ), where

Ψ(θ) is a vector of stacked moments from (16) and (17) and W is a positive definite

approximation to the optimal weight matrix.

3. Calculate the L1 norm of the difference between the new and starting sets of target

parameters and check whether it is below a tolerance level, ϵ. If
∣∣∣∣θ̂i+1

− θ̂
i∣∣∣∣ ̸< ϵ,

return to step 1 with new parameter values θ̂
i+1

; otherwise, the procedure stops.

On termination, the above procedure delivers a set of target parameter estimates, θ̂, and

value function approximating coefficients, λ̂, the latter of which I can use to construct final

estimates of firms’ value functions. I calculate standard errors for the target parameter

estimates via a non-parametric bootstrap of the above procedure in which I construct 200

samples by drawing entire market histories with replacement.

5.2.3 Entry Cost Estimation

Armed with estimates of the value function approximating coefficients, it is possible to

form estimates of entry values for potential entrants for use in estimating the entry cost

parameter. To do so, I compute the expected values of the state variables in the next period

for all potential entrants using the observed aggregate state variables and assuming that

entrants are endowed with random values of the non-deterministic state variables, quality

and hardware cost, where values are drawn from the empirical distribution of observed states.

Moreover, entrants enter with zero experience, Ejmt = 0. I calculate the expectation of future

state variables for entrants conditional on entry in a similar fashion to incumbents: I average

state values over 1000 draws from the state transition processes estimated in the first stage.

A challenge associated with estimating entry costs is that the number of potential entrants

in each market is unobserved. I follow standard practice in the literature and take a data-

driven approach to estimating the number of potential entrants in each market: I assume that

the number of potential entrants is some multiple of either the median, mean, or maximum
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number of observed entrants for each market over the sample period. I report estimates of

the entry cost parameter for several different assumed values of potential entrants.

With estimates of entry values for all potential entrants, it is possible to recover estimates

of the entry cost parameter, σω. I do so via maximum likelihood estimation (MLE) given

that an MLE estimator offers greater efficiency over a moment-based estimator matching

fitted entry probabilities to model-implied entry probabilities. The log likelihood for entry

is given by:

log(f(χejmt;σω))

=
∑
j,m,t

[
χejmt log

(
1− exp

(
−V Ej(smt; λ̂)

σω

))
− (1− χejmt)

(
V Ej(smt; λ̂)

σω

)]
(18)

where χejmt equals 1 if potential entrant j chooses to enter market m in period t and 0

otherwise. The MLE estimator maximizes the log likelihood given by (18):

σ̂ω = argmin
σω

∑
j,m,t

log(f(χejmt;σω))

I calculate standard errors for the target entry parameter estimate using a non-parametric

bootstrap with 200 bootstrap samples clustered by county.

5.2.4 Identification of the Dynamic Parameters

Identification of the dynamic parameters builds on existing results in the literature as well

as key model assumptions. As I discuss above, the primary concern with identifying the

production cost parameters governing learning economies is the potential for serial correlation

in the unobservable productivity shocks. Identification of the base cost, learning exponent,

effective experience, and serial correlation parameters therefore relies on the validity of the

model of firms’ productivity shocks given by (15). If this model is accurate, then variation in

observed prices, quantities, and exit decisions across incumbent firms with different hardware

costs and experience vectors identifies these production cost parameters.23

It is important to note that identification of the effective experience parameters may not

come directly from the data and existing assumptions. Of particular concern is the potential

for unobservable factors that are correlated with both a firm’s marginal installation cost

and the experience of its rivals. One example of such a factor is an unobservable demand

23As a robustness check, I also estimate the model using moments from the unobservable productivity
shock, κjmt, interacted with an alternative set of instruments, Zjmt, that plausibly satisfy the relevance and
exogeneity conditions. I discuss the results, which I present in Table A3, in Section 6.3.
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shock, perhaps at the county, region, or industry-level, that would increase incumbent firms’

own experience as well as the experience of their rivals in later periods. This would lead to

decreased marginal installation costs for firms as well as higher experience levels for rival

firms, which in the current model framework would potentially bias upward the effective

experience parameters governing inter-firm spillovers. Given the challenges associated with

identifying inter-firm spillovers, I choose to assume away this identification challenge in the

current set of estimation results; however, to explore the robustness of my qualitative findings

from the counterfactual simulations in Section 7, I simulate select counterfactuals with lower

levels of knowledge spillovers.

Finally, identification of the exit and entry parameters as well as the value function

approximating coefficients follows from Hotz and Miller (1993), who show that differences

in choice-specific value functions are identified from observed choice probabilities.

6 Model Results

I present the main model estimates in this section. I begin by presenting the first stage

estimates (Section 6.1) before turning to my estimates of the dynamic model primitives

(Section 6.2). I then discuss several robustness checks (Section 6.3).

6.1 First Stage Estimates

6.1.1 Consumer Demand

I present parameter estimates and standard errors clustered by county for the consumer

demand system in Table 2. Columns (1) and (2) estimate nested logit (NL) versions of the

demand system that remove individual-level heterogeneity in taste parameters. Columns (3)

through (5) correspond to different versions of the full RCNL model outlined in Section 4.1.

To ensure comparability in price coefficient estimates across the NL and RCNL models, I

divide price by county-quarter mean income in the NL models. All specifications include

both year and firm fixed effects.

The price coefficients (αp) are precisely estimated and have the expected sign across all

five specifications. Median own-price elasticities range from -1.09 to -1.43 and are smaller in

magnitude when including observable firm attributes. Market price elasticities are substan-

tially lower than own-price elasticities, which suggests that substitution primarily occurs

across installers rather than on the extensive margin (i.e., between installing and not in-

stalling solar PV). This is evident from the nesting parameter (η), which is relatively large

and precisely estimated across all specifications. An easier way to interpret the large nest-
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Table 2. Estimated Demand System Parameters

NL-1 NL-2 RCNL-1 RCNL-2 RCNL-3

Parameter (1) (2) (3) (4) (5)

Price/Income αp −0.959 −0.944 −0.599 −0.551 −0.862
(0.303) (0.306) (0.22) (0.215) (0.352)

Nesting Parameter η 0.901 0.901 0.901 0.901 0.902
(0.030) (0.028) (0.031) (0.028) (0.045)

Firm Attributes
High Efficiency α1 0.023 0.027 −0.27

(0.015) (0.015) (0.936)
# Modules α2 0.076 0.071 0.712

(0.015) (0.014) (1.025)
Avg. Electricity Price α3 −7.962 −7.433 21.114

(1.633) (1.535) (141.37)
Income Interactions
log(Income) × Constant σ1 1.966

(5.867)
log(Income) × High Efficiency σ2 0.065

(0.234)
log(Income) × # Modules σ3 −0.185

(0.318)
log(Income) × Avg. Electricity Price σ4 −7.599

(36.735)

Income Distribution Yes Yes Yes
Firm, Year FE Yes Yes Yes Yes Yes
Median Own Price Elast. −1.4 −1.39 −1.43 −1.33 −1.09
Median Outside Diversion 10.12% 10.03% 10.07% 10.07% 10.06%
J-Statistic 51.21 62.3 51.57 62.92 53.69

Notes: Estimation follows the procedure outlined in Section 5.1. There are 22,713 observations at the
firm-county-quarter level. The nested logit models NL-1 and NL-2 divide price by county-quarter mean
income whereas the random coefficients nested logit models RCNL-1, RCNL-2, and RCNL-3 use the full
sample of incomes drawn from the ACS PUMS to estimate price sensitivities and other income interaction
terms. High Efficiency is a binary variable that equals 1 if the installer offers high efficiency modules, #
Modules is the number of module types offered by the installer, and Avg. Electricity Price is the county-
quarter average electricity price. I report medians among all firm-county-quarter observations of own price
elasticities and outside diversion rates. Standard errors clustered by county are reported in parentheses.

ing parameter estimates is through diversion ratios, which imply that not installing is the

second-best choice for around 10% of consumers.

The coefficients on observable, time- and market-varying firm attributes are enlightening;

however, these coefficients are imprecisely estimated in the RCNL model that includes income

interactions. Consumers like installers that offer high efficiency PV modules, though this

appears to be primarily driven by higher income households. Consumers also appear to like

installers that offer a greater variety of solar PV module types; however, this appears to be

driven by lower income households. Low income households appear quite sensitive to average

electricity prices, deriving greater utility from PV installation in periods of high electricity
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prices, whereas the PV installation decisions of high income households are insensitive to

these prices. Overall, these results should be interpreted with caution given the lack of

precision of many of these estimates.

Given that I do not endogenize firms’ decisions over specific time-varying product at-

tributes in my model of installers and given the desirable substitution patterns of the RCNL

model, I use the demand system estimates in column (3) in the second stage of estimation

as well as all counterfactual simulations. I plot the distribution of own price elasticities of

demand estimated using my preferred demand model and compare these to estimated elastic-

ities from the literature in Appendix Figure A3.24 To test the robustness of my assumption

that a static demand model offers a reasonable approximation to consumer behavior, I de-

velop and estimate a dynamic demand model in Appendix C. Estimates from this dynamic

demand model are similar in magnitude—the median elasticity is -2.07—and demonstrate a

time pattern consistent with analogous static estimates as shown in Figure C1.

6.1.2 Exit Policy Function

As outlined in Section 5.1.2, I select a set of candidate regressors to include in the logit

regression of the discrete exit decision via LASSO. Of a total of 242 candidate regressors,

this process selects 206 non-zero regressors. The resulting logit regression has a deviance

of 12.34%. As shown in Appendix Figure D2, fitted exit probabilities for incumbents that

exit are larger than those for incumbents that continue: the average fitted exit probability

is 14.88% for exiting incumbents and 7.72% for continuing incumbents.

6.1.3 State Transitions

I report estimates of the AR(1) transition processes for the aggregate state variables, in-

cluding the demand state and the inclusive value state as well as the county-quarter average

price per watt, in Appendix Table A1. I report estimates of the AR(1) transition processes

for the firm-level state variables, including quality and hardware cost as well as a firm’s

price per watt, in Appendix Table A2. For each state variable, I report results from two

separate specifications, one each with and without county-specific intercepts. The estimated

transition process for each state variable is stationary.

24Overall, my elasticity estimates are similar in magnitude to those found elsewhere in the literature;
however, most existing elasticity estimates report the elasticity of the adoption decision with respect to price
rather than specific firms’ own-price elasticities. Hughes and Podolefsky (2015) and Bollinger and Gillingham
(2019) estimate static elasticities of -1.2 and -1.0 for California households. Gillingham and Tsvetanov (2019)
estimate a static elasticity of -0.65 for Connecticut households. Estimates from De Groote and Verboven
(2019) imply an upper bound on the static elasticity of -6.6. Gerarden (2022) estimates a static elasticity of
demand for PV modules of -1.48.
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6.2 Second Stage Estimates

6.2.1 Production and Exit Cost Estimates

I report results from the joint estimation of the main production and exit cost parameters

in Table 3. I allow for three distinct models of spillovers across rival firms and report the

resulting production cost, effective experience, and exit parameter estimates in each column.

The parameter that determines learning economies in marginal installation costs, γ, is

negative, large-in-magnitude, and precisely-estimated across all sets of estimates in Table

3. I report estimates from a model that assumes no serial correlation in firm’s productivity

shocks (i.e., ρ = 0.0) in column (1): as expected, the resulting learning exponent is larger

than the analogous specification that accounts for serial correlation in column (2), highlight-

ing the importance of modeling serial correlation in this unobservable. The learning exponent

estimates in columns (2) through (4) imply that a 1% increase in effective experience de-

creases marginal installation costs by between 0.73 and 0.88%. To aid in interpretation of

the learning exponent, I report the “Spence coefficient,” which describes the proportional

reduction in marginal installation costs for a doubling of effective experience (Spence, 1981).

The Spence coefficient ranges from 0.398 to 0.459 across columns (2) through (4), which

implies the presence of considerable learning-by-doing in installation-specific costs.

Importantly, I estimate substantial serial correlation in firms’ productivity shocks, κjmt.

Across columns (2) through (4), estimates of the productivity shock serial correlation param-

eter, ρ, range from 0.55 to 0.86. Though large in magnitude, these estimates are qualitatively

similar to other estimates of serial correlation in learning curve estimation: Benkard (2000)

reports first-order serial correlation coefficients between 0.73 and 0.97 in his learning curve es-

timates for commercial aircraft production. My estimates of the serial correlation parameter,

ρ, suggest that ignoring the potential for serial correlation would produce biased estimates.

Indeed, while my estimates of the learning exponent are large in magnitude, failure to ac-

count for serial correlation biases these estimates further away from zero as evidenced by

the results in column (1). This is due to the fact that firms with serially correlated, positive

productivity shocks are likely to have greater experience and relatively low marginal pro-

duction costs. Failure to account for this high degree of serial correlation in counterfactuals

could also lead to incorrect conclusions about counterfactual policies. I therefore focus on

the results in columns (2) through (5) moving forward.

The parameters on rival firms’ experience levels describe the marginal contribution of

other firms’ cumulative production to a firm’s effective experience. I estimate the produc-

tion cost and exit parameters using three different parameterizations of effective experience,

each of which implies a distinct model of learning spillovers across firms. All three parameter-
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Table 3. Estimated Production and Exit Cost Parameters

Base Specifications Alt. Spillovers Forgetting

Parameter (1) (2) (3) (4) (5)

Production Cost Parameters
Base Cost c0 2.067 2.145 2.041 2.006 2.179

(0.064) (0.046) (0.065) (0.158) (0.006)
Learning Exponent γ −1.098 −0.733 −0.887 −0.731 −0.649

(0.085) (0.083) (0.098) (0.099) (0.017)
Productivity Serial Correlation ρ 0.838 0.860 0.554 0.979

(0.099) (0.271) (0.285) (0.023)
Effective Experience
Industry Experience:

Total θE1 0.854 0.817 0.760
(0.014) (0.059) (0.010)

In-market θE2 0.747
(0.002)

Out-of-market θE3 0.687
(0.043)

Same Manufacturer θE4 0.749
(0.008)

Other Manufacturer θE5 0.740
(0.088)

Forgetting Parameter δ 0.954
(0.009)

Exit Parameter
Mean Scrap Value σϕ 4.585 2.488 3.451 4.550 1.351

(0.656) (1.148) (1.262) (1.348) (0.267)

N 11,581 11,581 11,581 11,581 11,581
Spence Coefficient (1− 2γ) 0.532 0.399 0.459 0.398 0.362

Notes: Estimation follows the procedure outlined in Section 5.2. I normalize experience variables by
the industry total experience level in the first quarter of the sample (Q1 2008). The base cost parameter
is therefore the marginal installation cost when a firm’s effective experience equals the industry total
experience in Q1 2008. All effective experience parameters can be interpreted as marginal experience
contributions relative to a firm’s own experience. The “forgetting parameter,” δ, describes the rate
of learning depreciation from one period to another (see discussion in Section 6.2.1). The mean scrap
value parameter is measured in 100,000 2013 USD. The “Spence Coefficient” describes the proportional
reduction in cost from a doubling of effective experience. Bootstrapped standard errors clustered by
county using 200 replications are reported in parentheses.

izations normalize the marginal contribution of a firm’s own experience to one, which implies

that all parameters on rival firms’ experience can be interpreted as marginal contributions

relative to a firm’s own experience.

The first parameterization groups the experience of all rival firms together, which is

consistent with a model of learning spillovers where there are no differences across firms.

Column (2) reports the baseline estimates from this parameterization: the learning benefits

from a 1 unit increase in total industry experience generates 82% of the learning benefits
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from a 1 unit increase in own-firm experience. This implies that learning spillovers from

rivals are substantial and not far from individual learning in terms of their contribution to

firms’ experience-based cost reductions.

To tease apart the mechanisms underlying this finding of non-trivial spillovers, I estimate

two alternative parameterizations of effective experience. The first allows for differential

spillovers based on whether or not firms are within the same market. This alternative pa-

rameterization is consistent with models of learning spillovers based on geographic proximity,

where knowledge transfer between firms is driven by the movement of workers between firms,

the visibility of rivals’ installation practices, or other forms of diffusion facilitated by prox-

imity.25 This parameterization is also consistent with a model of regulator learning: since

firms operating in the same county are likely to face similar regulatory regimes in the form

of local permitting requirements and utility rebate processing practices, any passive learning

by regulators that influences permitting or rebate processing costs associated with PV in-

stallations would show up as greater learning benefits from rivals within the same county.26

I report estimates from this parameterization of effective experience in column (3) of Table

3. I find that the marginal contribution of in-market rivals’ experience is larger relative to

that of out-of-market rivals; however, the difference between the two is minor. Thus, the

effective experience parameters in column (3) offer suggestive yet inconclusive evidence in

favor of one of these possible models of learning spillovers.

The second alternative parameterization of effective experience allows for differential

spillovers based on whether or not firms install modules from the same manufacturer.

This parameterization is consistent with a model of learning where knowledge transfer and

learning-by-doing is facilitated by PV module manufacturers, perhaps through manufacturer-

25I explore the plausibility of this model of learning diffusion by estimating the empirical relationship
between total PV installation-related employment, average PV installation-related wages, and the number
of residential PV installations within a county using data from the US Census Bureau’s Quarterly Census of
Employment andWages. As shown in Figure A4, I find strong, positive relationships between PV installation-
related employment/wages and the number of PV installations. While this does not directly speak to inter-
firm worker mobility, it does suggest that there is some degree of worker movement in the PV installation-
related labor pool. I am in the process of gaining access to a large sample of public employment profiles
from the social networking site LinkedIn that will allow me to more directly measure the extent of worker
movement between solar installers.

26I explore the plausibility of this model of regulator learning in my context using several additional data
sources. First, I examine differences in CSI rebate processing times across IOUs, each of which is responsible
for administering CSI rebates within their service area. As shown in Figure A5, there is suggestive evidence
that IOU rebate processing times decreased over the sample period, which would influence installation-
specific costs by decreasing overall project completion times and indirectly increasing installers’ installation
capacity in a given period. This suggestive evidence would result in greater spillovers across firms within the
same county to the extent that IOU service territories overlap county boundaries. To further explore this
model, I examine PV-related permitting times for San Diego County, the single largest county by number
of installations in my data. Figure A6 shows suggestive evidence that—at least in the case of San Diego
County—regulators’ permitting times decreased over the sample period.
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Figure 5. Cumulative Contribution of Experience to Installation Costs

Notes: This figure shows the average cumulative contribution of different forms of experience to
installation-specific costs over the full estimation sample period, 2008 to 2013. Each panel uses a set of
estimates from Table 3: the left panel uses estimates from column (2), the center panel uses estimates
from column (3) and the right panel uses estimates from column (4). The left panel therefore does
not distinguish spillovers across firms, whereas the center and right panel allow for different spillovers
based on whether or not firms are within the same market or install modules from the same manu-
facturer, respectively. Average contributions are calculated by evaluating the marginal contribution of
each source of experience using the estimates from Table 3 at the average observed experience levels
across the estimation sample in a given period.

led training or improvements in module design that directly impact the installation process.

I report estimates from this parameterization in column (4) of Table 3. I cannot reject

the hypothesis that the marginal contribution of rivals installing modules from the same

manufacturer is equivalent to that of rivals installing modules from other manufacturers.

While the effective experience parameters in Table 3 describe contributions of differ-

ent types of experience on the margin, the total contribution of each form of cumulative

production depends on both the parameter estimates and the empirical distributions of ex-

perience. Figure 5 plots the average cumulative contribution of different forms of experience

to marginal installation costs over the full estimation sample period. Despite all spillover

estimates in Table 3 implying smaller marginal contributions to learning relative to own-firm

experience, learning spillovers in practice drive the bulk of estimated installation-specific cost

reductions. I calculate that the average reduction in installation costs over the full sample

period resulting from a firm’s own experience is between $0.001 and $0.002. By contrast,

using the parameter estimates from column (2) of Table 3, I find that the average reduction
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in installation costs over the sample period resulting from other firms’ experience is $1.11.
Moreover, despite experience from in-market rivals having a larger marginal contribution to

learning than that from out-of-market rivals, the difference in magnitude of these different

experience levels means that knowledge spillovers from out-of-market rivals have a larger

impact on cost reductions overall.

I estimate a version of the model that allows firms’ experience-based cost reductions to

depreciate over time. Such “forgetting” models are relevant in several empirical settings

characterized by boom and bust cycles—including aircraft manufacturing, ship building,

auto manufacturing, and oil extraction—likely due to prolonged down time during busts

(Benkard, 2000; Kellogg, 2011; Levitt et al., 2013; Thompson, 2007). It is unlikely that

knowledge depreciation plays a major role in the current setting, which is characterized by

substantial, persistent growth; however, factors such as worker departures from one quarter

to the next could result in incomplete knowledge retention. To test this, I estimate a version

of the model with constant industry spillovers that assumes that each component of effective

experience accumulates according to a perpetual-inventory process: for example, firm j’s own

experience in market m in period t is defined by Ejmt = δ(Ejmt−1+qjmt−1).
27 The parameter

δ defines the rate of forgetting or, more precisely, knowledge retention.28 The results from

this model, which I report in Column (5) of Table 3 indicate minimal forgetting from one

period to the next, with an estimated quarterly retention parameter of 0.954. Allowing

for forgetting does reduce the estimated magnitude of learning economies and spillovers;

however, the qualitative findings of the full retention specifications appear robust to this

alternative model with forgetting.

Though the magnitude of learning-by-doing implied by the production cost estimates in

Table 3 is substantial, it aligns with existing estimates of installation-specific costs during

this period. Figure 6 compares the average installation-specific, non-hardware costs implied

by the parameter estimates reported in column (2) of Table 3 with comparable, publicly-

available estimates from the National Renewable Energy Laboratory (NREL). Fu et al. (2016)

construct these estimates from publicly-available data on installations, corporate filings from

27An alternative parameterization of forgetting could be Ejmt = δEjmt−1 + qjmt−1. I choose to assume
incomplete retention of knowledge based on the prior periods’ production as this is consistent with a model
of forgetting driven by worker turnover.

28The full parameterization of effective experience in this specification with constant spillovers and forget-
ting becomes:

Ẽj

(
smt; θ

E , δ
)
= δ(Ejmt−1 + qjmt−1) + θE1

∑
m

∑
k ̸=j

δ(Ekmt−1 + qkmt−1)


This assumes that the rate of forgetting is constant across own and rival cumulative production.
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publicly-traded installers, and existing engineering studies of PV installation costs. I report

the sum of Fu et al. (2016)’s cost estimates for the following categories: installation labor

costs per watt as well as permitting, inspection, and installation costs per watt.29 As is

clear from Figure 6, the installation-specific costs implied by my model estimates reasonably

match not only the magnitude of Fu et al. (2016)’s estimates, but also the rate of learning

over time implied by their estimates. Moreover, this is true both within my estimation

sample as well as in the three years after my estimation sample.

Figure 6 also shows the average marginal non-hardware costs implied by the model as-

suming that firms are completely static in their quantity-setting decisions. I calculate these

costs from the standard, static quantity-setting first order condition using observed prices,

observed hardware costs, and estimated price elasticities. Since I only estimate the demand

model in-sample, I therefore cannot estimate these static costs out-of-sample as I do in the

case of the dynamic model, which uses observed experience levels to make out of sample

predictions. While the installation-specific costs implied by my dynamic model reasonably

match the magnitude and shape of Fu et al. (2016)’s estimates over time, the static estimates

are nearly twice as large as both the dynamic model estimates and the NREL benchmark.

This emphasizes the importance of accounting for learning-by-doing and dynamic incentives

in firms’ quantity-setting decisions in my model: without accounting for these factors, I

would substantially overestimate non-hardware costs and underestimate the rate of learning.

The remaining production and exit cost parameters are precisely estimated and consistent

across specifications. The mean scrap value, σϕ, is between $248,800 and $455,000. To

ensure the readability of the effective experience parameters and improve numerical stability

in estimation, I normalize all experience terms by the total industry experience in the first

period of the estimation sample, Q1 of 2008. It is therefore possible to interpret the base

cost parameter as the marginal installation cost when a firm’s effective experience equals the

industry total experience in Q1 2008. Estimates of c0 range between $2.0 and $2.2 per watt.

6.2.2 Entry Cost Estimate

The final target parameter in the second stage of estimation is the mean entry cost. Table

4 reports estimates of the entry cost parameter using different data-driven approaches to

defining the number of potential entrants in each market. In particular, I assume that the

number of potential entrants is either one or two times the median, mean, or maximum num-

ber of observed entrants for each market over the sample period. This data-driven approach

29In their report, Fu et al. (2016) also include estimates of installer overhead and net profit in their estimate
of overall soft costs—or non-hardware costs—per watt. I exclude these categories in Figure 6 as markups
are strictly not a component of installers’ installation-specific costs and the estimates of overhead include
fixed business operating costs that are not a relevant to my installation-specific costs estimates.
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Figure 6. Comparison of Model-implied and Public Estimates of Installation Costs

Notes: This figure compares the average non-hardware costs implied by the dynamic model estimates
reported in column (2) of Table 3 with comparable, publicly-available estimates from the National Re-
newable Energy Laboratory, or NREL (Fu et al., 2016). The figure also shows static non-hardware costs
implied by the model. Static non-hardware costs are calculated from the standard, static quantity-setting
first order condition using observed prices, observed hardware costs, and estimated price elasticities. The
shaded area shows the 95% bootstrap confidence interval for the dynamic model estimates.

is common in the literature, with most studies using some multiple of the maximum observed

entrants (Barwick and Pathak, 2015; Barwick et al., 2021; Seim, 2006). Unsurprisingly, the

estimated entry cost parameter increases as the pool of potential entrants increases, with

estimates of the mean entry cost ranging from $2.7 to $8.1 million. While these estimates

may seem large—particularly in comparison to the estimates of mean exit cost—it is impor-

tant to note that this is the unconditional mean entry cost. Conditional on entering, the

average entry cost ranges between $943,900 and $1.05 million. Moreover, these estimates of

the average entry cost conditional on entry are similar in magnitude to existing estimates as

well as available information on publicly-traded installers during the estimation period.30

30Feldman et al. (2013) use engineering and accounting data to construct estimates of the upfront costs
associated with developing, constructing, and arranging third-party-financed residential PV systems and find
that fixed business expenses amount to $600,000/year for a representative firm in 2012. This translates to
roughly $5 million in perpetuity, assuming an annual discount factor of 87.5%. SolarCity Corp., which was
acquired by Tesla in 2016 at a cost of $2.6 billion had a market capitalization of roughly $5.6 billion at the
end of 2013 Q4, having installed roughly 75 megawatts (MW) of residential capacity during that calendar
year. Scaling this down using the average annual installed capacity across all installer-county observations
in my data—approximately 35 kilowatts (or 0.35 MW)—this translates to a roughly $2 million valuation for
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Table 4. Estimated Entry Cost Parameter

Parameter (1) (2) (3) (4)

Mean Entry Cost σω 27.286 28.665 34.931 81.240
(1.628) (1.696) (3.153) (6.687)

Potential Entrant Def. 2×median(N̄mt) 2×mean(N̄mt) 1×max(N̄mt) 2×max(N̄mt)
N 8,763 9,014 10,193 20,386
Ne 311 327 383 766
ω̄jmt|entry 9.439 9.514 9.785 10.505

Notes: Estimation follows the procedure outlined in Section 5.2. The entry cost parameter is measured
in 100,000 2013 USD. Each column corresponds to a different approach to defining the market-specific,
time-invariant number of potential entrants based on observed quantities of entrants, N̄mt: column (1) uses
twice the median of N̄mt, column (2) uses twice the mean of N̄mt, column (3) uses the maximum observed
value of N̄mt, and column (4) uses twice the maximum of N̄mt. N is the total number of observations used
in estimation and Ne is the number of potential entrants per year across all counties based on the assumed
potential entrant definition. ω̄jmt|entry is the mean entry cost conditional on a firm choosing to enter.
Bootstrapped standard errors clustered by county using 200 replications are reported in parentheses.

6.3 Robustness

I explore the robustness of my main estimates of the model parameters in several ways.

First, I re-estimate the model using a different set of moments. In particular, rather than

relying on the moment from the innovation in firms’ unobserved productivity shocks, I use

these productivity shocks themselves interacted with a set of instruments, Zjmt, that satisfy

the relevance and exogeneity conditions to form a set of moments from which I can recover

valid estimates of the production cost and experience parameters. As I discuss in Section

5.2, estimation from the unobservable productivity shock alone would likely produce biased

estimates. I therefore interact the following instruments with the unobservable: realized

consumer rebates; observed firm-level deviations from average utility interconnection pro-

cessing times; current and lagged cost shifters (aluminum and polysilicon commodity prices;

county-quarter specific wage rates); and current and lagged demand shifters (retail electric-

ity prices, observed solar insolation). To further account for the endogeneity concern due to

potentially serially-correlated productivity shocks, I include a common time trend in firm’s

marginal costs in this alternative estimator. I report estimates from this approach along-

side my baseline production and exit cost parameter estimates in Table A3. Results are

remarkably robust across these estimators: estimates of learning economies and exit costs

are similar across each approach. While I estimate slightly smaller spillovers across rival

firms from the alternative estimator, the magnitude of these spillovers is still quite large.

I also test the sensitivity of my main model estimates to alternative assumptions on the

quarterly discount factor, β, which is common to all firms. In my main estimates and the

the county-level operations of an average firm in my data.
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counterfactual analysis that follows, I assume a quarterly discount factor that corresponds

to an annual discount factor of 0.875. This discount factor is equal to that of Gerarden

(2022)’s model of solar PV manufacturers and is similar in magnitude to that estimated by

De Groote and Verboven (2019) for PV-adopting households. I re-estimate the model using

two alternatives corresponding to annual discount factors of 0.9 and 0.8, each of which can

be found in the literature (Igami, 2017; Ryan, 2012). The latter discount factor also serves

as a proxy for dynamic regulatory environments as it renders future payoffs less relevant for

decisions in the current period. Thus, estimating the model with an annual discount factor

of 0.8 serves as a test of the robustness of my assumption that firms perceive changes to the

subsidy policy regime as permanent in my setting.

I report estimates using these alternative discount factors alongside my baseline estimates

in Table A4. Overall, results are qualitatively consistent across alternative discount factors;

however, the costs implied by the resulting parameter estimates increase with the discount

factor.31 This is consistent with the model: a higher discount factor implies higher expected

values from future operations, which means that higher cost estimates are necessary to ratio-

nalize the observed patterns of entry, exit, and quantity choices. The qualitative consistency

across discount factors suggests that assuming stationary beliefs over the policy environment

is reasonable in this setting.

Given that I define a firm’s experience as a function of their cumulative production,

it is possible that some of the estimated learning economies actually represent static scale

economies. Separately identifying learning-by-doing and static scale economies is a challenge

throughout the empirical literature estimating learning curves. I test the sensitivity of my

main model estimates to the presence of static economies of scale by estimating a version

of the preferred specification that includes a static, contemporaneous measure of firm size

as a state variable when approximating firms’ value function. Table A5 compares model

estimates with and without the measure of firm size as a state variable and finds qualitatively

consistent results. Similar to Benkard (2000), the estimated learning rate increases slightly

when including scale as a state variable.

7 Counterfactual Analysis

Having recovered estimates of the main model parameters, I can simulate market out-

comes under counterfactual policy environments, which requires a method for solving for

31Specifically, the mean scrap value and base cost parameters all increase with the discount factor, β,
as these parameters are positively related to firm costs. The effective experience and learning exponent
parameters each decrease with the discount factor: for a given realization of firm and industry experience
levels, lower parameter values imply higher costs.
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the model’s equilibrium. I begin this section by briefly describing my approach to solving

the model and summarizing counterfactual results (Section 7.1). I then compare the fit of

model-predicted outcomes under the baseline policy environment with observed data (Sec-

tion 7.2) before discussing results from three sets of counterfactual scenarios: I first quantify

the impacts of the California Solar Initiative and evaluate alternative consumer subsidy de-

signs (Section 7.3). I then evaluate a set of alternative industrial policies, including an entry

subsidy (Section 7.4), and alternative climate policies, including a carbon tax (Section 7.5).

Results from these counterfactual simulations provide three findings. First, I find that

the CSI contributed to growth in the installation industry: the CSI increases the number of

solar PV installations by 4% and increases the number of operating installers by roughly 9%

relative to a world with no CSI. Second, I find that the CSI’s decreasing rebate structure

results in the highest welfare—which includes consumer and producer surplus as well as

net environmental damages—in comparison to alternative rebate designs and other forms

of climate policy, including a $30/ton carbon tax, when focusing solely on outcomes in the

state’s solar PV market. This suggests that some sort of technology-specific policy with a

design similar to that of the CSI may be desirable as part of a broader portfolio of climate

policies. Finally, I find that consumer subsidies may not be as effective as more conventional

forms of industrial policy such as entry subsidies: replacing the CSI with entry subsidies of

varying sizes results in more installation and entry as well as higher welfare.

7.1 Counterfactual Solution Method

My approach to solve for the model’s equilibrium builds on the method of Sweeting (2013),

which adapts parametric policy iteration (Benitez-Silva et al., 2000) to allow for value func-

tion approximation. I provide a detailed description of this approach in Appendix F. Solving

the model involves two steps: first, solving for the new Bellman equation, policy functions,

and product market equilibrium in a given period and second simulating the industry for-

ward one period. In each of the counterfactual scenarios that I describe below, I initiate this

two-step procedure at the observed data in the first period of my main estimation sample—

the first quarter of 2008—and then repeat the two-step procedure until I reach the end of

the main estimation sample—the last quarter of 2013.

I implement the first step of this counterfactual solution method via a fixed point algo-

rithm. This fixed point algorithm, which I describe in greater detail in Appendix F, produces

conditional exit probabilities and value function approximating coefficients in a given period,

which I can use to calculate conditional entry probabilities. Armed with conditional exit and

entry probabilities for incumbents and potential entrants in a given period from the first step,

I can then implement the second step of solving the model: simulating the industry forward
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one period. In particular, I take a single draw from the conditional exit and entry proba-

bilities and then implement firms’ resulting, discrete exit and entry decisions. For the next

period’s new incumbents and potential entrants, I then take a single draw from the state

transition processes estimated in the first stage of estimation. The simulated industry then

proceeds to the next period and the fixed point algorithm outlined above is used to solve

the model in that period.

The above process results in a single industry path over the full counterfactual period.

Given that I take single draws from the conditional exit and entry probabilities as well as

the state transition processes each time I simulate the industry forward one period, I repeat

the above process multiple times, averaging market outcomes across a number of distinct,

forward-simulated industry paths. In practice, I repeat the process of simulating the model

forward over the 6 years in the estimation sample 60 distinct times for each counterfactual

scenario and then average key outcomes across all 60 model runs.

A number of policy- and welfare-relevant outcomes are endogenous to the model, in-

cluding quantities, prices, and marginal costs as well as firm entry and exit. These objects

allow me to calculate firms’ profits and consumer surplus. Given that a key policy justifica-

tion for incentivizing solar PV adoption is to address environmental externalities associated

with legacy electricity generation sources, I use the quantities of PV adoption predicted for

each counterfactual scenario to conduct a back-of-the-envelope calculation of any changes

in environmental damages. I combine my model-predicted quantities with geographically-

differentiated estimates of the marginal environmental benefits of additional solar capacity

in the US from Sexton et al. (2021). Additional details are available in Appendix F.

7.2 Model Fit under Baseline Policies

Before turning to results from counterfactual policy simulations, I compare the fit of model-

predicted outcomes under the baseline policy environment with observed data. This exercise

complements the discussion of model fit in Section 6.2 and is particularly important as the

predicted equilibrium outcomes from simulating the model under the baseline, realized policy

environment serve as points of comparison for each of the counterfactual policy scenarios.

As shown in Figure A7, the model-predicted, statewide entry and exit probabilities rea-

sonably match those observed in the data. In particular, the model-predicted, statewide exit

probability matches both the level and shape of the empirical exit probability from 2008 to

2013. In the case of the statewide entry probability, the model matches the overall number

of entries well; however, the model appears to under-predict entry early on and over-predict

entry late in the second half of the period from 2008 to 2013. Overall, the model matches

observed entry and exit patterns reasonably well.
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Figure 7. Impact CSI Subsidies on Market Size and Installation Costs

Notes: This figure shows the model-predicted number of active firms with and without the California
Solar Initiative (CSI) subsidies (left) and the cumulative increase in marginal installation costs resulting
from removing the CSI subsidies. Counterfactual and baseline outcomes reported above are averaged
across 60 distinct, forward-simulated industry paths. The cumulative change in non-hardware costs is
the cumulative difference in average marginal installation costs per watt between the counterfactual
policy scenario without the CSI subsidies and the baseline scenario with the full CSI subsidies.

7.3 Counterfactual Results: California Solar Initiative

Figure 7 summarizes the effect of the CSI’s consumer subsidies on the number of active firms

over time. The figure shows the model-predicted number of active firms statewide with and

without the CSI as well as the cumulative difference in marginal non-hardware costs from

removing the CSI relative to the baseline of existing subsidies. The CSI increases the number

of installed PV systems by 4% and the number of active firms at the end of the estimation

period by around 9% relative to a scenario that removes the CSI entirely. As shown in

Figure 7, the effect of the CSI on the number of active firms occurs gradually over time.

This matches the gradual reduction in installed PV systems resulting from CSI removal and

is likely due to the incremental impacts on reduced knowledge transfer. As shown in the

right panel of Figure 7, the cumulative impact of CSI removal on marginal non-hardware

costs, which captures the cumulative increase in marginal production costs for a firm active

throughout the estimation period, steadily increases over time.

I further explore the role of learning spillovers in driving this gradual reduction in the

number of active firms by re-simulating the industry under both the baseline subsidy policy

regime and the CSI removal counterfactual, but with knowledge spillovers that are half as

large as the main model estimates. Figure A8 reports the change in the model-predicted

number of active firms from CSI removal relative to the baseline for each level of learning
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spillover. Overall, cutting the size of learning spillovers in half reduces the impact of CSI

removal on the number of active firms and delays the timing of CSI removal’s impacts taking

effect. However, the qualitative result remains the same: CSI removal with smaller learning

spillovers results in a gradual reduction in the number of incumbent firms.

These results offer two main findings: first, the qualitative finding of CSI removal reducing

the number of active firms is robust to smaller spillovers, suggesting that the challenges

associated with identifying learning spillovers that I discuss in Section 5.2.4 do not drive

this qualitative finding. Second, the fact that the magnitude and timing of the CSI removal

scale with the size of learning spillovers indicates that non-appropriable learning serves as

the main mechanism through which consumer subsidies impact the number of incumbents.

I report estimates of the change in welfare in Table 5. Overall, removing the CSI reduces

welfare, primarily through reduced consumer surplus and reduced revenues, as well as higher

production and exit costs. To explore the implications of the CSI’s unique rebate design that

decreased over time, I estimate two additional CSI counterfactuals: a flat rebate equal to the

quantity-weighted average rebate amount under the baseline CSI design and a rebate that

increases over time, inverting the steps of the baseline CSI design. The latter counterfactual is

motivated by the finding of Langer and Lemoine (2022) that an increasing subsidy can allow

policymakers to optimally price discriminate. I find that an increasing subsidy decreases

welfare relative to the decreasing, baseline CSI subsidy, suggesting that in this case taking

advantage of cost reductions from learning-by-doing may be optimal. Interestingly, the

welfare losses from a flat subsidy are minor. Figure 8 plots the change in the number of

active firms as well as the change in the number of solar PV installations relative to the

baseline of full subsidies under each of these alternative CSI counterfactuals.

7.4 Counterfactual Results: Alternative Industrial Policies

The CSI’s consumer subsidies increase the quantity of solar installations and the number

of active firms, suggesting that they are effective at achieving the objective of growing the

state’s solar installation industry. How do the CSI’s consumer subsidies compare to more

common industrial policies, such as entry subsidies? I examine this by simulating a set of

counterfactual policies in which I remove the CSI subsidies and replace them with entry

subsidies of varying sizes. In particular, I separately replace the CSI subsidies with entry

subsidies equal to one quarter, one half, and three quarters of the preferred estimate of the

mean entry cost.32

As shown in Table 5, replacing the CSI subsidies with these entry subsidies greatly

32The preferred mean entry cost is $2.7 million, so the entry subsidies that I implement are $675,000,
$1.35 million, and $2.025 million per entrant, approximately.
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Table 5. Estimated Changes in Welfare under Counterfactual Policy Scenarios

Welfare Components ($M)

Scenario ∆CS ∆EB ∆Rev. −∆Costprod −∆ϕ ∆ω ∆Total

CSI Counterfactuals:
Remove CSI -22.8 -6.6 -20.9 -18.8 -63.3 115.9 -16.6
Flat CSI -0.7 -1.8 -8.5 -7.7 -39.5 57.6 -0.6
Increasing CSI -50.0 -1.4 -11.5 -10.8 -28.6 58.1 -44.2

Entry Subsidies:
1/4*Mean Entry Cost 134.7 1.2 -6.2 -5.7 120.7 -43.9 200.7
1/2*Mean Entry Cost 472.6 7.7 13.4 13.1 247.6 240.3 994.7
3/4*Mean Entry Cost 785.1 17.3 36.4 33.7 508.7 1089.5 2470.7

Alternative Climate Policies:
Carbon Tax ($30/ton) -45.1 -1.2 -9.0 -8.3 -8.9 10.4 -62.1
Remove Federal ITC -2.3 -8.6 -48.3 -44.3 -22.3 21.5 -104.3
10% Federal ITC -7.0 -6.2 -34.2 -31.1 -18.6 15.3 -77.7
26% Federal ITC 16.9 -2.0 -12.6 -11.2 -12.8 9.0 -12.7

Notes: This table reports model-predicted changes in welfare components as well as total welfare rel-
ative to the baseline scenario of existing consumer subsidy policies under three sets of counterfactuals:
alternative California Solar Initiative (CSI) subsidy designs, varying levels of entry subsidies, and alter-
native climate policies. The baseline subsidy policies correspond to those outlined in Section 2.2: full
CSI subsidies, 30% federal investment tax credit (ITC), and net-metering policy. The alternative CSI
designs, entry subsidies, and carbon tax all remove the full CSI subsidy program. The three different
ITC counterfactuals keep the full CSI subsidy program in-place and alter the design of the federal ITC.
Each counterfactual welfare component reported in the table represents an average across 60 distinct,
forward-simulated industry paths under the given counterfactual. ∆CS is the change in consumer sur-
plus, ∆EB is the change in environmental benefits, ∆Rev. is the change in firm revenue, ∆Costprod is
the change in production costs, ∆ϕ is the change in scrap values, and ∆ω is the change in entry costs.
All values are reported in million 2013 USD.

increases total welfare, mostly through increased consumer surplus and lower net-of-subsidy

total entry costs. Figure 8 shows that entry subsidies greatly increase not only the number

of active incumbents, but also the number of solar PV installations. The effects of the entry

subsidies on welfare, market size, and installations scale with the size of the subsidy.

While both the CSI and the counterfactual entry subsidies lead to industry growth,

the two function in different ways. The additional demand induced by the CSI’s consumer

rebates leads to greater learning-by-doing and lower production costs relative to a world with

no state-level consumer subsidies. This in turn makes it more profitable to be an incumbent,

raises firm values, and leads to an increase in net entry. In the case of the counterfactual entry

subsidies, the resulting reductions in entry costs increases pressure from potential entrants,

lowers firm values, and greatly increases churn in the industry (i.e., increases both entry and

exit) relative to the equilibrium with CSI subsidies as shown in Figure A9. The net expansion

in the number of operating firms resulting from entry subsidies increases competition in the

product market, which reduces firms’ net markups (i.e., markups net of any markdowns) by
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Figure 8. Change in Active Firms and Installation Quantities under Counterfactual Policies

Notes: This figure shows the model-predicted change in the number of active firms (top) and installation
quantities (bottom) relative to the baseline scenario of existing consumer subsidy policies under three sets
of counterfactuals: alternative California Solar Initiative (CSI) subsidy designs (left), varying levels of
entry subsidies (center), and alternative climate policies (right). The baseline subsidy policies correspond
to those outlined in Section 2.2: full CSI subsidies, 30% federal investment tax credit (ITC), and net-
metering policy. The alternative CSI designs, entry subsidies, and carbon tax all remove the full CSI
subsidy program. The three different ITC counterfactuals keep the full CSI subsidy program in-place
and alter the design of the federal ITC. Each counterfactual outcome plotted in the figure represents an
average across 60 distinct, forward-simulated industry paths under the given counterfactual.
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8 to 25% relative to the baseline CSI subsidies depending on the size of the entry subsidy.

Figure A10 shows changes in average net markups under the entry subsidy and CSI removal

counterfactuals. This combined with the fact that consumers face a substantially expanded

choice set increases demand for solar installations, which leads to lower production costs

through learning as shown in Figure A11.33 This works to further amplify the effects of

the entry subsidies in a similar fashion to the CSI’s consumer subsidies, which helps to

explain the finding that entry subsidies outperform the CSI subsidies in terms of number of

installations, number of operating firms, and aggregate welfare.

The fact that the counterfactual entry subsidies raise welfare, result in greater entry,

and generate more take-up of solar PV relative to the CSI suggests that some form of entry

policy may be preferable to consumer subsidies in this setting. It is important to note,

however, that these counterfactual entry subsidies have substantial fiscal costs, ranging from

$2.1 billion to $8.4 billion. While these are similar in magnitude to the $2.2 billion in

consumer subsidies under the CSI, the CSI was paid for by California’s electricity ratepayers

and therefore represents a transfer between all ratepayers and CSI-adopting households.

Without specifying a revenue-generating policy for these counterfactual entry subsidies, it is

difficult to fully compare them to the CSI. Moreover, there are likely political costs associated

with implementing entry subsidies that may not apply consumer subsidies (e.g., the former

are seen as a windfall to industry), therefore making the latter more appealing in practice.

7.5 Counterfactual Results: Alternative Climate Policies

While the CSI’s consumer subsidies appear to increase both solar take-up and solar industry

size, this policy is still second-best relative to an optimal carbon price to address the global

externality problem that is climate change. However, as the CSI counterfactual results

indicate, consumer subsidies for clean technologies may still be desirable given their ability

to not only mitigate emissions externalities, but also address technology market failures

resulting from knowledge spillovers in learning-by-doing. Particularly at carbon pricing

levels observed in practice, which are often far below the socially-optimal level, policies that

address these market failures in specific technologies may outperform carbon pricing alone,

suggesting that some combination of carbon pricing and industrial policy may be desirable.

To explore this dynamic empirically, I implement a counterfactual that compares a hypo-

thetical carbon tax of $30/ton of carbon dioxide emissions to the CSI’s consumer subsidies.34

33An expanded choice set leads to greater demand through the parametric assumption of a logit demand
model, which implicitly assumes consumers have a taste for variety.

34A carbon tax of $30/ton is roughly equal to the average price of emissions allowances in the sec-
ondary market under California’s existing cap-and-trade program from 2020 to 2023 (for additional infor-
mation, see: https://ww2.arb.ca.gov/our-work/programs/cap-and-trade-program). California’s cap-
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I do so by estimating the likely impact of a $30/ton carbon tax on retail electricity prices,

which I can then translate into a change in the net present value of PV adoption due to

households energy consumption and net-metering receipts.35

Overall, a $30/ton carbon tax results in marginally less PV installation and active instal-

lation firms relative to the CSI as shown in the right panel of Figure 8. This is due to the fact

that the impact of a $30/ton carbon tax on the present discounted value of solar adoption,

which operates through the effect of the tax on retail electricity rates, is minor in comparison

to the CSI subsidies. As a result of the lower adoption and entry rates in this counterfactual,

a $30/ton carbon tax results in lower welfare relative to the baseline CSI subsidies. It is

important to note that the carbon tax in this counterfactual will have wide-ranging impacts

beyond the solar industry, for which these counterfactual simulations do not account. Thus,

this counterfactual exercise does not invalidate a carbon tax as a first-best climate policy.

However, the results from this counterfactual indicate that additional policies to address

specific technology market failures, such as those resulting from learning spillovers, may be

necessary when implementing carbon pricing at levels observed in practice.

As a final set of counterfactual exercises, I keep the CSI subsidies in place but vary

the level of the federal investment tax credit (ITC). This is relevant to the ITC extension

included in the recently-passed Inflation Reduction Act of 2022, which increased the net-

of-subsidy ITC for PV-adopting households from 26% to 30% through 2032.36 I implement

separate counterfactuals that keep the CSI subsidies in place but replace the 30% baseline

ITC with net-of-rebate ITC rates of 0%, 10%, and 26%. Overall, these alternative ITC

levels have limited impacts on installer entry despite having relatively substantial impacts

on the number of solar installations. This is perhaps due to the fact that firms are able to

charge higher net markups under these scaled-back ITC counterfactuals, since the remaining

adopting households are quite price inelastic.

and-trade program, a form of carbon pricing, went into effect in 2013, the final year of my sample period.
This counterfactual therefore asks what would be the outcome from removing the CSI and implementing a
far more stringent carbon pricing policy for the full sample period, 2008 to 2013.

35In particular, I take data on the observed emissions rate for gas-fired boilers—the main fossil generator
in the state—in California over 2008-2013 from the US Energy Information Administration, which allows
me to translate a $30/ton carbon tax into an increased cost of generation per kilowatt-hour. I then assume
full pass through of the tax to retail rates which, assuming a system capacity of 5 kW, an annual production
amount equal to the statewide average, and a system lifespan of 25 years, I can translate into a per-watt
subsidy to PV-adopting households. A $30/ton carbon tax roughly translates to an adoption subsidy equal
to $0.61/watt of system capacity.

36Prior to the passage of the Inflation Reduction Act, the 30% federal ITC had been scaled back to 26%
starting in 2020.

54



8 Conclusion

Policymakers face a growing imperative to invest in climate mitigation. Troubling trends

in natural disasters and extreme weather events continue to emphasize the need to avoid

the most catastrophic consequences of a changing climate. Despite economists’ decades

of advocacy in favor of carbon pricing as the first-best policy tool to address the global

externality problem of climate change, policymakers increasingly turn to non-pricing forms

of climate policy, including subsidies for the adoption of clean technologies, to achieve their

decarbonization goals. As policymakers respond to growing calls to decarbonize the economy,

rigorous evidence on the full suite of impacts of these policy tools is necessary to ensure an

informed policy debate.

Despite playing a prominent role in the policy debates surrounding consumer subsidy

programs, particularly in the context of clean technology subsidies, little empirical evidence

exists on whether consumer subsidies can effectively increase the size of target industries. At

issue is a tradeoff fundamental to infant industries characterized by learning economies and

knowledge spillovers, where incumbent firms face a tension between reducing their own future

costs and raising their rivals’ future costs when making production decisions today. I shed

light on this tradeoff in a policy-relevant setting by developing a model of the residential solar

PV installation industry in California, which I use to simulate equilibrium market outcomes

under a suite of counterfactual policies.

I find that learning economies and knowledge spillovers are substantial in this setting. As

a result, the model implies that consumer subsidies are an effective tool for increasing not only

the number of solar installations, but also the number of active firms. However, in comparison

to more conventional forms of industrial policy such as entry subsidies, consumer subsidies

may not prove as effective: I find that welfare, the quantity of solar installations, and the

amount of new entry are all greater for an entry subsidy of a similar magnitude to existing

consumer subsidies in California. Thus, while consumer subsidies may be an appealing

second-best tool for policymakers to achieve their decarbonization and industrial policy

goals, other approaches to addressing the twin externality problem of un-priced pollution

and non-appropriable learning may be preferable.
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Barbose, Galen, Näım Darghouth, Eric O’Shaughnessy, and Sydney Forrester.
2022. “Tracking the Sun: Pricing and Design Trends for Distributed Photovoltaic Systems
in the United States, 2022 Edition.” Lawrence Berkeley National Laboratory.

Barwick, Panle Jia, and Parag A. Pathak. 2015. “The costs of free entry: an empir-
ical study of real estate agents in Greater Boston.” The RAND Journal of Economics,
46(1): 103–145.

Barwick, Panle Jia, Myrto Kalouptsidi, and Nahim Bin Zahur. 2021. “Industrial
Policy Implementation: Empirical Evidence from China’s Shipbuilding Industry.”Working
Paper.

Benitez-Silva, Hugo, John Rust, Gunter Hitsch, Giorgio Pauletto, and George
Hall. 2000. “A Comparison Of Discrete And Parametric Methods For Continuous-State
Dynamic Programming Problems.” Computing in Economics and Finance 2000.

Benkard, C. Lanier. 2000. “Learning and Forgetting: The Dynamics of Aircraft Produc-
tion.” American Economic Review, 90(4): 1034–1054.

Benkard, C. Lanier. 2004. “A Dynamic Analysis of the Market for Wide-Bodied Com-
mercial Aircraft.” The Review of Economic Studies, 71(3): 581–611.

56



Benkard, C. Lanier, Przemyslaw Jeziorski, and Gabriel Y. Weintraub. 2015.
“Oblivious equilibrium for concentrated industries.” The RAND Journal of Economics,
46(4): 671–708.

Berry, Steve, and Ariel Pakes. 2000. “Estimation from the Optimality Conditions for
Dynamic Controls.” Working Paper.

Berry, Steven, James Levinsohn, and Ariel Pakes. 1995. “Automobile Prices in Market
Equilibrium.” Econometrica, 63(4): 841–890.

Berry, Steven, James Levinsohn, and Ariel Pakes. 1999. “Voluntary Export Restraints
on Automobiles: Evaluating a Trade Policy.” American Economic Review, 89(3): 400–430.

Berry, Steven T. 1994. “Estimating Discrete-Choice Models of Product Differentiation.”
The RAND Journal of Economics, 25(2): 242–262.

Berry, Steven T., and Philip A. Haile. 2014. “Identification in Differentiated Products
Markets Using Market Level Data.” Econometrica, 82(5): 1749–1797.

Besanko, David, Ulrich Doraszelski, Yaroslav Kryukov, and Mark Satterthwaite.
2010. “Learning-by-Doing, Organizational Forgetting, and Industry Dynamics.” Econo-
metrica, 78(2): 453–508.

Bistline, John, Neil Mehrotra, and Catherine Wolfram. 2023. “Economic Impli-
cations of the Climate Provisions of the Inflation Reduction Act.” National Bureau of
Economic Research Working Paper 31267.

Bloom, Nick, Rachel Griffith, and John Van Reenen. 2002. “Do R&D tax credits
work? Evidence from a panel of countries 1979–1997.” Journal of Public Economics,
85(1): 1–31.

Bollinger, Bryan, and Kenneth Gillingham. 2012. “Peer Effects in the Diffusion of
Solar Photovoltaic Panels.” Marketing Science, 31(6): 900–912.

Bollinger, Bryan, and Kenneth Gillingham. 2019. “Learning-by-Doing in Solar Pho-
tovoltaic Installations.” Working Paper.

Borenstein, Severin. 2017. “Private Net Benefits of Residential Solar PV: The Role of
Electricity Tariffs, Tax Incentives, and Rebates.” Journal of the Association of Environ-
mental and Resource Economists, 4(S1): S85–S122.

Brenkers, Randy, and Frank Verboven. 2006. “Liberalizing a Distribution System: The
European Car Market.” Journal of the European Economic Association, 4(1): 216–251.

Cabral, Luis M. B., and Michael H. Riordan. 1994. “The Learning Curve, Market
Dominance, and Predatory Pricing.” Econometrica, 62(5): 1115–1140.

California State Senate. 2006. “S.B. 1 - Electricity: solar energy: net metering.” 2005-
2006 Legislative Session.

57



CBO. 2022. “Summary Estimated Budgetary Effects of Public Law 117-169, to Provide for
Reconciliation Pursuant to Title II of S. Con. Res. 14 (September 7, 2022).” Congressional
Budget Office and Joint Committee on Taxation.

Collard-Wexler, Allan. 2013. “Demand Fluctuations in the Ready-Mix Concrete Indus-
try.” Econometrica, 81(3): 1003–1037.

Conlon, Christopher, and Jeff Gortmaker. 2020. “Best practices for differentiated prod-
ucts demand estimation with PyBLP.” The RAND Journal of Economics, 51(4): 1108–
1161.

Covert, Thomas R. 2015. “Experiential and Social Learning in Firms: The Case of Hy-
draulic Fracturing in the Bakken Shale.” Working Paper.

Covert, Thomas R., and Richard L. Sweeney. 2022. “Winds of Change: Estimating
Learning by Doing without Cost or Input Data.” Working Paper.

CPUC. 2009. “California Solar Initiative Annual Program Assessment.” California Public
Utilities Commission.

De Groote, Olivier, and Frank Verboven. 2019. “Subsidies and Time Discounting
in New Technology Adoption: Evidence from Solar Photovoltaic Systems.” American
Economic Review, 109(6): 2137–2172.

Doraszelski, Ulrich, and Mark Satterthwaite. 2010. “Computable Markov-perfect in-
dustry dynamics.” The RAND Journal of Economics, 41(2): 215–243.

Ericson, Richard, and Ariel Pakes. 1995. “Markov-Perfect Industry Dynamics: A
Framework for Empirical Work.” The Review of Economic Studies, 62(1): 53–82.

Feldman, David, David Friedman, and Robert Margolis. 2013. “Financing, Over-
head, and Profit: An In-Depth Discussion of Costs Associated with Third-Party Financing
of Residential and Commercial Photovoltaic Systems.” National Renewable Energy Lab-
oratory, U.S. Department of Energy NREL/TP-6A20-60401, Golden, CO.

Fowlie, Meredith, Mar Reguant, and Stephen P. Ryan. 2016. “Market-Based Emis-
sions Regulation and Industry Dynamics.” Journal of Political Economy, 124(1): 249–302.

Fudenberg, Drew, and Jean Tirole. 1983. “Learning-by-Doing and Market Perfor-
mance.” The Bell Journal of Economics, 14(2): 522–530.

Fu, Ran, Donald Chung, Travis Lowder, David Feldman, Kristen Ardani, and
Robert Margolis. 2016. “U.S. Solar Photovoltaic System Cost Benchmark: Q1 2016.”
National Renewable Energy Laboratory, U.S. Department of Energy NREL/TP-6A20-
66532, Golden, CO.

Gerarden, Todd D. 2022. “Demanding Innovation: The Impact of Consumer Subsidies on
Solar Panel Production Costs.” Management Science, Forthcoming.

58



Ghemawat, Pankaj, and A. Michael Spence. 1985. “Learning Curve Spillovers and
Market Performance.” The Quarterly Journal of Economics, 100: 839–852.

Gillingham, Kenneth, and Tsvetan Tsvetanov. 2019. “Hurdles and steps: Estimating
demand for solar photovoltaics.” Quantitative Economics, 10(1): 275–310.

Gowrisankaran, Gautam, and Marc Rysman. 2012. “Dynamics of Consumer Demand
for New Durable Goods.” Journal of Political Economy, 120(6): 1173–1219.

Grigolon, Laura, and Frank Verboven. 2014. “Nested Logit or Random Coefficients
Logit? A Comparison of Alternative Discrete Choice Models of Product Differentiation.”
The Review of Economics and Statistics, 96(5): 916–935.

Hall, Bronwyn, and John Van Reenen. 2000. “How effective are fiscal incentives for
R&D? A review of the evidence.” Research Policy, 29(4): 449–469.

Hotz, V. Joseph, and Robert A. Miller. 1993. “Conditional Choice Probabilities and
the Estimation of Dynamic Models.” The Review of Economic Studies, 60(3): 497–529.

Hughes, Jonathan E., and Molly Podolefsky. 2015. “Getting Green with Solar Subsi-
dies: Evidence from the California Solar Initiative.” Journal of the Association of Envi-
ronmental and Resource Economists, 2(2): 235–275.

Ifrach, Bar, and Gabriel Y. Weintraub. 2017. “A Framework for Dynamic Oligopoly
in Concentrated Industries.” The Review of Economic Studies, 84(3): 1106–1150.

Igami, Mitsuru. 2017. “Estimating the Innovator’s Dilemma: Structural Analysis of Cre-
ative Destruction in the Hard Disk Drive Industry, 1981–1998.” Journal of Political Econ-
omy, 125(3): 798–847.

Interstate Renewable Energy Council. 2023. “National Solar Jobs Census 2022.” In-
terstate Renewable Energy Council.

IRENA. 2022. “Renewable Power Generation Costs in 2021.” International Renewable En-
ergy Agency, Abu Dhabi.

IRENA. 2023. “Renewable Capacity Statistics 2023.” International Renewable Energy
Agency, Abu Dhabi.

Irwin, Douglas A., and Peter J. Klenow. 1994. “Learning-by-Doing Spillovers in the
Semiconductor Industry.” Journal of Political Economy, 102(6): 1200–1227.

Ito, Koichiro. 2014. “Do Consumers Respond to Marginal or Average Price? Evidence
from Nonlinear Electricity Pricing.” American Economic Review, 104(2): 537–563.

Jeon, Jihye. 2022. “Learning and investment under demand uncertainty in container ship-
ping.” The RAND Journal of Economics, 53(1): 226–259.
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A Supplemental Figures and Tables

Figure A1. Costs and Discounted Benefits of a 5 kW PV System in California, 2000-2020

Notes: This figure shows the evolution of the upfront installation cost and present discounted benefits of
a representative 5 kilowatt (kW) residential PV system in California from 2000 to 2020. Data on average
installation costs and rebates in California come from the Lawrence Berkeley National Lab’s “Tracking
the Sun” database (Barbose et al., 2022). Data on net retail electricity rates, expected PV output,
and net metering policy come from the Energy Information Administration’s Form 816, the World
Bank Group’s Global Solar Atlas, and California Public Utilities Commission materials, respectively. I
assume a real interest rate of 3% to calculate present values and assume a system lifespan of 25 years,
annual household PV energy consumption totaling 6000 kW-hours, and PV power potential equal to
the average for the state in order to calculate electricity consumption and net metering benefits.
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Figure A2. CSI Rebate Rate Structure

Notes: This figure shows the rebate llevels under the California Solar Initiative (CSI) as a function
of cumulative-installed capacity. This figure is inspired by a similar figure that appears in Pless and
Van Benthem (2019).
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Figure A3. Estimated Own Price Elasticities

Notes: This figure shows the distribution of estimates of the own price elasticities of demand for all
firm-county-quarter observations in the main estimation sample estimated using the random coefficients
nested logit model reported in Column (3) of Table 2. Estimates of the adoption decision elasticity from
the literature are reported below the horizontal axis (Bollinger and Gillingham, 2019; De Groote and
Verboven, 2019; Gerarden, 2022; Gillingham and Tsvetanov, 2019; Hughes and Podolefsky, 2015).
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Figure A4. Relationship between Total PV Installation-related Employment, Wages and
Installations

Notes: This figure shows the relationship between total quarterly PV installation-related employment
and the average PV installation-related wage in a county and the quarterly total number of residential
PV installations within that county. Data on employment levels and wages are from the US Census
Bureau’s Quarterly Census of Employment and Wages and include the quarterly number of workers in
the roofing and electrician industries. The blue circles depict binned means; the blue line shows the
linear relationship between the log of total PV installation-related employment/wages and the log of
total installations; and the black points represent the raw data.
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Figure A5. Average CSI Project Completion Time Added

Notes: This figure shows the quarterly average observed time added to residential solar PV installations
that apply for California Solar Initiative (CSI) rebates separately for rebate program administrators and
installers. Quarterly averages are reported separately by each of the three main investor-owned utili-
ties (IOUs): San Diego Gas and Electric (SDG&E), Pacific Gas and Electric (PG&E), and Southern
California Edison (SCE). Rebate-level data for the CSI obtained from the California Public Utilities
Commission provide dates for detailed rebate processing milestones, which allow me to attribute cumu-
lative time added to rebate processing due to the IOUs (left panel), which serve as the rebate program
administrators, and individual installers (right panel). The lines show cubic b-splines, which I estimate
separately for each IOU.

A-5



Figure A6. Average Permitting Time for PV Projects, San Diego County

Notes: This figure shows the quarterly average time-to-completion for solar photovoltaic (PV)-related
permits in San Diego County, California. Permit-level data on historical developments permits are
available from https://data.sandiego.gov/datasets/development-permits-set1/ (last accessed
August 10, 2023). These permit-level data provide dates for key project milestones, including the date
a permit application is received and the date a permit is approved. To identify PV-related permits, I
use an existing category of permit types in the data that distinguishes PV-related electrical permits;
however use of this category appears to become widespread in the data starting in 2012. I therefore
identify electrical permits in earlier years that are likely for PV-related projects by matching keywords
(e.g., “PV,” “solar,” and various iterations of these terms) in a detailed project description field. The
overlaid line shows a cubic b-spline fitted to the average time-to-completion data.
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Figure A7. Comparison of Simulated and Actual Entry and Exit Probabilities

Notes: This figure compares the model-predicted, statewide entry (left panel) and exit (right panel)
probabilities with the statewide entry and exit probabilities observed in the data. The baseline subsidy
policies correspond to those outlined in Section 2.2 and observed in practice: full CSI subsidies, 30%
federal investment tax credit (ITC), and net-metering policy. The simulated probabilities plotted in the
figure represent averages across 60 distinct, forward simulated industry paths under the baseline subsidy
policies, each of which is generated from the model as described in Section 7.1 and Appendix F. To
generate the probabilities of entry plotted in the left panel, I assume the number of potential entrants
for each county is equal to twice the maximum number of observed quarterly entrants for that county.
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Figure A8. Change in Active Firms from Removing CSI Subsidies with Different Spillover
Sizes

Notes: This figure shows the model-predicted change in the number of active firms relative to the
baseline scenario of existing consumer subsidy policies under a counterfactual of no CSI subsidies for
two levels of learning spillovers: the full spillovers estimated in the preferred specification in Table 3 and
1/2 these full spillovers. The baseline subsidy policies correspond to those outlined in Section 2.2: full
CSI subsidies, 30% federal investment tax credit (ITC), and net-metering policy. I simulate the baseline
of full subsidies and the counterfactual of no CSI subsidies separately for each spillover size. Each
counterfactual outcome plotted in the figure represents an average across 60 distinct, forward-simulated
industry paths under the given counterfactual.
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Figure A9. Cumulative Change in Exits and Entries under Counterfactual Policies

Notes: This figure shows the model-predicted change in the cumulative number of exiting firms (top)
and entering firms (bottom) relative to the baseline scenario of existing consumer subsidy policies under
three sets of counterfactuals: alternative California Solar Initiative (CSI) subsidy designs (left), varying
levels of entry subsidies (center), and alternative climate policies (right). The baseline subsidy policies
correspond to those outlined in Section 2.2: full CSI subsidies, 30% federal investment tax credit (ITC),
and net-metering policy. The alternative CSI designs, entry subsidies, and carbon tax all remove the full
CSI subsidy program. The three different ITC counterfactuals keep the full CSI subsidy program in-place
and alter the design of the federal ITC. Each counterfactual outcome plotted in the figure represents an
average across 60 distinct, forward-simulated industry paths under the given counterfactual.
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Figure A10. Change in Net Markups under Select Counterfactual Policies

Notes: This figure shows the model-predicted average net markups (i.e., average sum of markups and
markdowns) relative to the baseline scenario of existing consumer subsidy policies under four counter-
factuals. The four counterfactuals included in this figure each remove the CSI and either do not replace
the CSI’s consumer subsidies or replace them with entry subsidies of various sizes. The baseline subsidy
policies correspond to those outlined in Section 2.2: full CSI subsidies, 30% federal investment tax credit
(ITC), and net-metering policy. Each counterfactual outcome plotted in the figure represents an average
across 60 distinct, forward-simulated industry paths under the given counterfactual.
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Figure A11. Cumulative Change Non-hardware Costs under Counterfactual Policies

Notes: This figure shows the model-predicted cumulative change in non-hardware costs relative to the
baseline scenario of existing consumer subsidy policies under three sets of counterfactuals: alternative
California Solar Initiative (CSI) subsidy designs (left), varying levels of entry subsidies (center), and
alternative climate policies (right). The baseline subsidy policies correspond to those outlined in Section
2.2: full CSI subsidies, 30% federal investment tax credit (ITC), and net-metering policy. The alternative
CSI designs, entry subsidies, and carbon tax all remove the full CSI subsidy program. The three different
ITC counterfactuals keep the full CSI subsidy program in-place and alter the design of the federal ITC.
Each counterfactual outcome plotted in the figure represents an average across 60 distinct, forward-
simulated industry paths under the given counterfactual.
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Table A1. Estimated Transition Processes for Aggregate State Variables

Demand (Installations) Avg. Price ($/W) Inclusive Value

(1) (2) (3) (4) (5) (6)

Intercept 2.853 0.4100 0.0026
(1.932) (0.1057) (0.0008)

(Demand)t−1 0.9724 0.7191
(0.0380) (0.1205)

(Avg. Price)t−1 0.9126 0.9077
(0.0156) (0.0165)

(Inclusive Value)t−1 0.8393 0.6380
(0.0655) (0.1156)

County FE Yes Yes Yes
Observations 885 885 885 885 885 885
R2 0.84 0.86 0.81 0.81 0.62 0.66
Within R2 0.43 0.80 0.34

This table reports estimates of the first-order autoregressive (AR(1)) transition processes
for three county-quarter aggregate state variables, demand (number of installations), average
price per watt, and the inclusive value. The table reports two separate specifications for
each state variable, one each with and without county-specific intercepts. Standard errors
clustered at the county-level are reported in parentheses.

Table A2. Estimated Transition Processes for Firm-specific State Variables

Own Quality Hardware Cost ($/W) Price ($/W)

(1) (2) (3) (4) (5) (6)

Intercept -1.164 0.3997 0.9885
(0.1895) (0.0295) (0.0806)

(Own Quality)t−1 0.8438 0.5275
(0.0253) (0.0780)

(Hardware Cost)t−1 0.8715 0.8666
(0.0069) (0.0069)

(Price)t−1 0.8256 0.8127
(0.0125) (0.0118)

County FE Yes Yes Yes
Observations 5,862 5,862 5,862 5,862 5,862 5,862
R2 0.70 0.75 0.76 0.77 0.69 0.69
Within R2 0.24 0.76 0.67

This table reports estimates of the first-order autoregressive (AR(1)) transition processes
for three firm-county-quarter state variables, own quality (which is derived from the de-
mand system estimates), hardware cost per watt, and price. The table reports two separate
specifications for each state variable, one each with and without county-specific intercepts.
Standard errors clustered at the county-level are reported in parentheses.
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Table A3. Comparison of Estimators for Production and Exit Cost Parameter

Baseline Moment Alternative Moments
Parameter (1) (2)

Production Cost Parameters
Base Cost c0 2.145 2.110

(0.046) (0.334)
Learning Exponent γ -0.733 -0.734

(0.083) (0.138)
Productivity Serial Correlation ρ 0.838

(0.099)
Common Time Trend t 0.147

(0.039)
Effective Experience
Industry Experience: Total θE1 0.817 0.505

(0.059) (0.119)
Exit Parameter
Mean Scrap Value σϕ 2.488 2.208

(1.148) (0.373)

N 11,581 18,272
Spence Coefficient (1− 2γ) 0.399 0.399
Production Cost Moment(s) E[νjmt] = 0 E[Z ′

jmt · κjmt] = 0

Notes: Estimation in column (1) follows the procedure outlined in Section 5.2. Estimation
of the production cost parameters in column (2) relies on moments from the unobservable
productivity shock, κjmt, interacted with a set of instruments, Zjmt, that satisfy the rele-
vance and exogeneity conditions: i.e., E[Z ′

jmt · κjmt] = 0. As a result of not relying on the
innovation in firms’ serially-correlated unobservable productivity shock, νjmt, data do not
need to be first-differenced in implementing the alternative estimation approach in Column
(2). Instruments in Zjmt include: realized consumer rebates; observed firm-level deviations
from average utility interconnection processing times; current and lagged cost shifters (alu-
minum and polysilicon commodity prices; county-quarter specific wage rates); and current
and lagged demand shifters (retail electricity prices, observed solar insolation). I normalize
experience variables by the industry total experience level in the first quarter of the sample
(Q1 2008). The base cost parameter is therefore the marginal installation cost when a firm’s
effective experience equals the industry total experience in Q1 2008. All effective experience
parameters can be interpreted as marginal experience contributions relative to a firm’s own
experience. The mean scrap value parameter is measured in 100,000 2013 USD. The “Spence
Coefficient” describes the proportional reduction in cost from a doubling of effective experi-
ence. Bootstrapped standard errors clustered by county using 200 replications are reported
in parentheses.
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Table A4. Estimated Production and Exit Cost Parameter Estimates for
Different Discount Factors

Annual Discount Factor: β = 0.8 β = 0.875 β = 0.9
Parameter (1) (2) (3)

Production Cost Parameters
Base Cost c0 2.004 2.145 2.303
Learning Exponent γ -0.979 -0.733 -0.426
Productivity Serial Correlation ρ 0.680 0.838 1.051
Effective Experience
Industry Experience: Total θE1 0.993 0.817 0.560
Exit Parameter
Mean Scrap Value σϕ 1.383 2.488 4.429

N 11581 11581 11581
Spence Coefficient (1− 2γ) 0.256 0.399 0.493

Notes: Estimation follows the procedure outlined in Section 5.2. Different annual
discount factors are used in each column. I normalize experience variables by
the industry total experience level in the first quarter of the sample (Q1 2008).
The base cost parameter is therefore the marginal installation cost when a firm’s
effective experience equals the industry total experience in Q1 2008. All effective
experience parameters can be interpreted as marginal experience contributions
relative to a firm’s own experience. The mean scrap value parameter is measured in
100,000 2013 USD. The “Spence Coefficient” describes the proportional reduction
in cost from a doubling of effective experience.
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Table A5. Estimated Production and Exit Cost Parameter Estimates
with Scale as a State Variable

State Variables: Baseline +Firm Size

Parameter (1) (2)

Production Cost Parameters
Base Cost c0 2.145 2.075

(0.046) (0.046)
Learning Exponent γ -0.733 -0.846

(0.083) (0.176)
Productivity Serial Correlation ρ 0.838 0.842

(0.099) (0.621)
Effective Experience
Industry Experience: Total θE1 0.817 0.878

(0.059) (0.084)
Exit Parameter
Mean Scrap Value σϕ 2.488 3.174

(1.148) (0.848)

N 11,581 18,272
Spence Coefficient (1− 2γ) 0.399 0.444

Notes: Estimation follows the procedure outlined in Section 5.2. Column (1)
corresponds to the baseline preferred specification of the model in Column (2)
of Table 3. Column (2) re-estimates this specification but adds firms’ current
period size (i.e., production quantity) as a state variable to account for static
economies of scale. I normalize experience variables by the industry total experi-
ence level in the first quarter of the sample (Q1 2008). The base cost parameter is
therefore the marginal installation cost when a firm’s effective experience equals
the industry total experience in Q1 2008. All effective experience parameters
can be interpreted as marginal experience contributions relative to a firm’s own
experience. The mean scrap value parameter is measured in 100,000 2013 USD.
The “Spence Coefficient” describes the proportional reduction in cost from a
doubling of effective experience.
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B Data Appendix

B.1 Additional Information on Data Sources

I provide information on each of the data sources used in my empirical analysis below.

• Lawrence Berkeley National Lab’s (LBNL) Tracking the Sun Database: provides system-

level data on PV systems annually from state agencies and utilities that administer PV

incentive programs, renewable energy credit registration systems, or grid interconnec-

tion processes. The public use database includes information on the date of installation,

system size, total installed price, total pre-tax rebate value, customer type, zip code,

mounting type, and installer name, as well as various technical details about installed

hardware, including the energy conversion efficiency (i.e., how much incoming solar

radiation a panel converts into electrical power), make, and manufacturer of installed

PV modules. These data also include a number of unique identifier fields which are

maintained from the original databases sourced from state agencies and utilities, which

allows me to link individual systems to other data sources that I outline below. LBNL

processes the source data prior to publishing the public use data, including removing

systems with missing size or installation date fields; standardizing installer, module,

and inverter manufacturer names; and integrating publicly available equipment speci-

fication data with system-level data. The full sample includes data on over 2.5 million

PV systems installed from 2000 to 2021, covering both residential and non-residential

systems. Barbose et al. (2022) estimate that the database covers approximately 77% of

the total estimated US market for PV systems over 2000-2021. I use these data to gen-

erate the main datasets used to estimate the demand and supply models. Additional

information on these data is available at https://emp.lbl.gov/tracking-the-sun

(last accessed 8/22/2023).

• California Public Utilities Commission (CPUC) California Solar Initiative (CSI) Hard-

ware Cost Data: provides system-level data on PV system hardware cost for a subset

of California residential PV systems that applied for the CSI rebate. Installation firms

submitting CSI rebate paperwork to the relevant administering investor owned utility

(IOU) on behalf of installing households were not uniformly required to include infor-

mation on the total cost of all system hardware installed; however, these data were

voluntarily provided by installers for a large number of systems, particularly during

the period 2008-2013, which corresponds to the main period of the CSI. I acquire these

system-level hardware cost data from the CPUC via contacts at LBNL for over 60,000

California systems and I am able to successfully match non-zero hardware costs to over
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79% of systems in the broader, processed LBNL Tracking the Sun data for this period

using unique CPUC-generated identifiers contained in both datasets. Please contact

me for additional information on these data: jbradt@g.harvard.edu.

• CPUC CSI Working Dataset: provides system-level data on the universe of CSI rebate

applications from the three main IOUs, including all non-accepted applications. These

data are one of the underlying sources for LBNL’s Tracking the Sun public use data;

however, these data contain more detailed information on the CSI rebate for which

applications are eligible, which I use to determine the precise dates of CSI rebate

changes for each of the three main IOUs. Information on these data is available at

https://www.californiadgstats.ca.gov/downloads/ (last accessed 8/22/2023).

• Google Project Sunroof: provides estimates of the share of buildings in a given county

for which adopting solar would lead to a positive net present value. These data combine

satellite imagery, three-dimensional modeling, and shade calculations at a property-

level with weather data from NREL, retail electricity rates from Clean Power Research,

and solar cost data from Aurora Solar Software to estimate for a range of different

assumed system lifespans and discount rates the share of households for which solar

has a positive net present value. I use these data in combination with data on the

number of owner-occupied housing units in a county to estimate the size of the market

for residential solar PV installations in California counties. Given that the returns from

solar installation can vary significantly from property to property based on shading and

roof orientation, approximating the universe of households that are suitable for solar

is far more appealing than assuming that all households are potential adopters. These

data therefore should provide more reasonable estimates of installation firms’ market

shares for use in estimating the demand model. Additional information on these data

is available at https://sunroof.withgoogle.com/ (last accessed 8/22/2023).

• World Bank Group’s Global Solar Atlas: provides estimates of the long-term annual

average photovoltaic power potential of a 1 kilowatt (kW) capacity PV system in

raster data format at a 250-meter resolution. I use these data in combination with

administrative boundary data for California Counties from the US Census Bureau to

estimate the average annual power production potential for a residential PV system

installed in each county. This helps me calculate the approximate consumption and

net energy metering (NEM) benefits for each system in my system-level data (see

additional details in Section B.3 below). I also use these data to calculate the changes

in PV electrical power output for each counterfactual scenario, which I then use to

A-17

mailto:jbradt@g.harvard.edu
https://www.californiadgstats.ca.gov/downloads/
https://sunroof.withgoogle.com/


determine avoided climate and local air pollution damages. Information on these data

is available at https://globalsolaratlas.info/download (last accessed 8/22/2023).

• US Census Bureau American Community Survey (ACS) Public Use Microdata Sample

(PUMS): provides household-level demographic data for a sample of households in

California each year in my main estimation period, 2008 to 2013. ACS PUMS provide a

1-in-100 national random sample of the population and identify households geographic

location down to the public use microdata area, which contains at least 100,000 persons.

When the number of residents in a county exceeds 100,000, PUMS also identify a

household’s county of residence. I obtain PUMS data for the state of California for each

year from 2008 to 2013 and randomly draw 200 households for each county-quarter in

that year in order to allow for preference heterogeneity by income in my demand model.

When counties are sufficiently large to be identified in the PUMS, I draw 200 households

from the sample identified as residing in that county. In cases where counties are not

sufficiently large to be identified in the PUMS, I draw 200 households from the entire

state. Additional information on these data is available at https://www.census.gov/

programs-surveys/acs/microdata.html (last accessed 8/22/2023).

• US Census Bureau ACS 5-year Estimates and 2000 Decennial Census: provides annual

estimates of the number of owner-occupied housing units for each California county

for 2009-2013. I use these estimates in combination with data from Google’s Project

Sunroof to calculate the size of the potential market of residential PV adopters in

each California county for the period 2008 to 2013, which I use in turn to estimate

each installation firm’s market share in estimating the demand model. Unfortunately,

ACS estimates are unavailable for the year 2008, so I use the count of owner-occupied

housing units in each California county from the 2000 Decennial Census in combina-

tion with the 5-year ACS estimates for 2009-2013 to impute values for the year 2008.

Additional information on these data is available at https://www.census.gov/data/

developers/data-sets/acs-5year.html (last accessed 8/22/2023).

• US Energy Information Administration (EIA) Form 861: provides annual data on

every electric utility in the US that allows me to calculate the average residential

electricity rate for each of the three main IOUs in California. Following the approach

of Borenstein and Bushnell (2022), I take annual data on total retail revenues and

kilowatt-hour sales for residential customers for each of the three California IOUs

for 2008-2013 to calculate an IOU-specific measure of average retail electricity rates.

I then use these estimates to calculate the approximate consumption and net energy

metering (NEM) benefits for each system in my system-level data (see additional details
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in Section B.3 below). Additional information on these data is available at https:

//www.eia.gov/electricity/data/eia861/ (last accessed 8/23/2023).

• US Bureau of Labor Statistics (BLS) Quarterly Census of Employment and Wages:

provides quarterly data on average wages for private sector electricians and roofers

for all California counties for the period 2008-2013. I use quarterly county-level em-

ployment levels to construct a weighted average of observed electrician and roofer

wages for each California county during this period. These data are used as instru-

ments in the demand model. Additional information on these data is available at

https://www.bls.gov/cew/ (last accessed 8/23/2023).

B.2 Sample Restrictions

I now discuss the full set of sample restrictions that I apply to the main system-level data

obtained from LBNL’s Tracking the Sun public data file. These data are the primary source

for constructing the estimation data for the demand and supply model. As discussed in

Section 3.1, I restrict the LBNL data to only include systems installed in California and fur-

ther remove all non-residential systems, all ground-mounted systems, any residential systems

with capacity exceeding 20 kW, and any residential systems for which I do not observe the

installed price or rebate. Removing residential systems exceeding 20 kW in capacity only

eliminates a small subset of outlier residential systems that are likely installed at multi-family

condominium buildings. I also exclude self-installed systems given my focus on the residen-

tial installation market and any systems owned by a third party. I further exclude those

installations with a price per watt that is less than the first or greater than the ninety-ninth

percentile of the prices per watt of all installations in the sample to remove outliers.

B.3 Constructing Data for Demand Estimation

Estimating the demand model requires me to aggregate the processed system-level data to

the firm-county-quarter-level. Given the importance of the system-level hardware cost data

in estimating the supply model, I subset the system-level data to those installations for

which I observe hardware cost data when constructing aggregate data for demand estima-

tion. While this process of aggregating the system-level data is relatively straightforward, it

is worth describing steps taken for certain key data fields. In particular, it is worth outlin-

ing the way in which I estimate county-quarter-level market shares, average installed price

per watt, the per watt value of public PV adoption incentives, and a set of firm-level at-

tributes. Normalizing prices and rebate amounts by installed system capacity is important

in aggregating data for demand estimation as it ensures I am aggregating comparable goods:
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averaging total installed prices across systems of vastly different sizes could lead to mislead-

ing conclusions about firms’ prices. While this eliminates possible scale economies in firms’

installed prices, the relatively commoditized nature of the underlying PV module technology

makes this a reasonable approach to handling installations of different sizes.

Calculating market shares requires me to first estimate the pool of potential PV adopters.

As discussed in Section B.1 above, given that the returns from solar installation can vary

significantly on a property-level based on shading and roof orientation, it is necessary to

approximate the universe of households that are suitable for solar as assuming that all

households are potential adopters would vastly underestimate firms’ market shares. I there-

fore combine data from Google Project Sunroof on the share of buildings in each California

county for which adopting solar has a positive net present value with annual estimates of

the number of owner-occupied housing units in each county from the US Census Bureau. I

focus on owner-occupied housing to abstract away from standard principal-agent problems

inherent to energy-efficient technology adoption decisions in renter-occupied housing. Im-

portantly, in estimating the demand model I account for the durable nature of PV system

installations by removing adopting households from my estimate of the potential market size.

To do so, I take advantage of the full history of processed system-level data for California

going back to 2000 that is available in the LBNL Tracking the Sun public use data file.

Having constructed reasonable estimates of the potential market of residential PV adopters,

I can then use observed installation counts to calculate firms’ market shares.

Turning to the price and rebate data, calculating county-quarter averages for all installers

from the existing fields in the processed system-level data is relatively straightforward. One

important step that I take in calculating these averages is to construct weights for each

installation based on that installation’s share of the installing firm’s total installed capacity

within a county in a given quarter. I then calculate weighted averages at the county-quarter-

firm-level that should be representative of the prices offered and rebates available to a firms’

customers across a county in a given period.

While I directly observe upfront CSI rebates in the system-level data, I do not observe the

two other primary forms of public PV adoption incentives, the federal investment tax credit

(ITC) and net energy metering (NEM). Fortunately, calculating the per watt ITC benefit

for all installations in my data is relatively straightforward, assuming that all households

fully capitalize the tax credit. For household i choosing installer j in market m in period t,

the per watt ITC benefit, ITCijmt can be written as:

ITCijmt =

{
min

{
1000/qijmt, 0.3(pijmt − rijmt)

}
if t < 2009 Q1

0.3(pijmt − rijmt) if t ≥ 2009 Q1
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Figure B1. Spatial Variation in PV Power Potential and Retail Electricity Rates

Notes: These maps show spatial variation in the long-term annual average photovoltaic (PV) power
potential of a 1 kW capacity PV system from the World Bank Group’s Global Solar Atlas (left) and
average retail electricity rates by county based on data from the Energy Information Administration’s
Form 861 (right).

where pijmt is the total installed price paid by household i, rijmt is the per watt upfront

rebate received by household i, and qijmt is household i’s installed system capacity.

Constructing system-level estimates of the upfront benefit from NEM policy is slightly

more complicated. Doing so requires me to make some strong assumptions about household

energy consumption, system lifespan, and household discount rates. I rely on estimates of

excess PV output as a share of system output for California from Darghouth et al. (2011)

to calculate the quantity of electricity sold back to the grid by each system in my data.

I then calculate expected annual system output using estimates of the long-term annual

average photovoltaic power potential of a 1 kW capacity PV system from the World Bank

Group’s Global Solar Atlas and system-level data on overall system capacity (see Figure B1).

Combining these system-level estimates of expected annual output with Darghouth et al.

(2011)’s findings on excess generation and data on average retail electricity rates from EIA

Form 861 (see Figure B1), I can calculate the net present value of expected NEM benefits

assuming a system lifespan of 25 years and an annual household discount rate of 12.5%,

which is approximately equal to that estimated by De Groote and Verboven (2019). Having
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obtained system-level estimates of the ITC and NEM benefits per watt, I then calculate

weighted averages for each installer-county-quarter observation as described above. I then

aggregate all public incentives per watt in estimating the demand model.

Finally, I convert all dollar-denominated fields to 2013 real dollars using the consumer

price index (CPI) for all urban consumers.37 I construct a set of attributes that vary over

time for inclusion in the demand model. These include counts of the number of distinct

module types offered by an installer as well as an indicator of whether the installer’s average

installed module efficiency exceeds the 75th percentile in the sample.

B.4 Constructing Data for Supply Model

I now describe the process of constructing the data used in estimating the supply model.

These data start from the same installer-county-quarter-level dataset used to estimate the

demand model, with several additional fields. In particular, I add to this dataset the following

fields: average hardware cost per watt as well as a set of experience and quantity variables.

Average hardware cost is calculated in the same manner as the average installed price and

rebate fields above, namely as a firm-county-quarter weighted average. Hardware costs are

similarly deflated using the CPI.

I compute a set of experience variables using the full history of processed system-level

data for California going back to 2000 that is available in the LBNL Tracking the Sun

public use data file. Experience in my model can be defined in several ways; however the

primary way in which I define experience is in terms of cumulative PV system capacity

installed. I therefore use data going back to 2000 to calculate cumulative installed capacity

for each installer-county-quarter combination. I also calculate the following measures of

rivals experience: cumulative installed capacity for rivals in the same county, rivals in other

counties, rivals installing PV modules from the same manufacturer, and rivals installed PV

modules from other manufacturers. Importantly, I normalize all experience fields, which are

measured in watts, by the total, statewide cumulative installed watts at the beginning of my

main estimation period, the first quarter of 2008. This helps ensure numerical stability in

estimating the supply model given that firm-level cumulative installed capacity in a given

county and, for example, the cumulative installed capacity of rival firms in other counties

can differ by several orders of magnitude. For each of these experience fields, I also calculate

the corresponding quantity of installed capacity in each period. I calculate these quantities

in absolute watts as well as normalized by the statewide cumulative installed watts in 2008

Q1 as both the raw and normalized quantities are also used in estimation.

37US Bureau of Labor Statistics, Consumer Price Index for All Urban Consumers: All Items in U.S. City
Average [CPIAUCSL], retrieved from FRED, Federal Reserve Bank of St. Louis.
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C A Dynamic Model of Demand for Solar Installations

A large literature uses static discrete choice models to estimate demand for durable goods,

including vehicles (Berry et al., 1995, 1999) and commercial airplanes (Benkard, 2004). How-

ever, several papers implement dynamic discrete choice models of demand for solar PV, find-

ing that static models can deliver biased demand estimates (Bollinger and Gillingham, 2019;

De Groote and Verboven, 2019; Feger et al., 2022; Langer and Lemoine, 2022).

While there is evidence to suggest that consumers are forward-looking in this setting,

I assume that a static demand model provides a reasonable approximation to consumer

behavior. This simplifying assumption buys substantial computational gains, eliminating

the need to jointly solve dynamic supply and demand in counterfactual analysis. Given

my emphasis on the supply-side impacts of solar incentives, the use of a static model as a

reduced form for demand is likely reasonable; however, it is worth assessing the extent to

which this introduces bias in my estimates.

To do so, I develop and estimate a dynamic discrete choice model of solar adoption based

on De Groote and Verboven (2019) and Bollinger and Gillingham (2019). For the purposes

of this exercise, I omit individual-level heterogeneity in preferences (i.e., remove random

coefficients) and omit observable, time- and firm-specific attributes.

C.1 Model Setup

Similar to the static model in Section 4.1, incumbent firms in each period and market face a

set of idiosyncratic consumers, i ∈ {1, . . . , Nmt}, who demand solar PV installation services.

Each consumer observes a market- and time-specific state, smt, and either purchases a solar

PV installation from one of the observed incumbents (j ∈ {1, . . . , Jmt}) or chooses to not

install solar PV in this period (j = 0). The market and time specific state is the union of

active incumbents’ prices; available rebates, including the present discounted value of the

future stream of net metering rents; and qualities:

∪j∈Jmt

[
pjmt rjmt ξjmt

]
Consumers are also differentiated by an idiosyncratic random utility shock that is alterna-

tive specific, ε̄ijmt. The conditional indirect utility that consumer i receives from choosing

installer j in market m in period t is:

uijmt(smt) = α(pjmt − rjmt) + ξjmt + ξ̄j + ξ̄t︸ ︷︷ ︸
≡δjmt

+ε̄ijmt (C1)
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where pjmt is the retail price per watt of system capacity; rjmt is a market-time-varying rebate

or subsidy per watt of system capacity; ξjmt is a firm’s market-time-specific unobserved

quality; ξ̄j allows the mean valuation of unobserved product characteristics to vary freely by

product; and ξ̄t allows the mean valuation of the indirect utility from installation to vary

freely over time. As in the main text, I normalize prices and rebates by system capacity to

ensure consistency when aggregating these variables across systems of different sizes.

Consumers that do not adopt solar in market m in period t receive a flow utility u0mt

and experience the option value of adopting in the future:

ui0mt(smt) = u0mt + βE
[
V (smt+1|smt)

]
︸ ︷︷ ︸

≡δ0mt

+ε̄i0mt (C2)

where β is a common, quarterly discount factor.

As with the static demand model in the main text, I decompose the idiosyncratic pref-

erence shock using the distributional assumptions of the nested logit model following Berry

(1994). For each market and in each period, define two groups, g ∈ {0, 1}, where g = 1

includes the full set of incumbent installers and g = 0 the no-installation option. Then

ε̄ijmt = ζigmt + (1− η)εijmt

where εijmt is independent and identically distributed (i.i.d.) Type 1 Extreme Value, ζigmt

has the unique distribution such that ε̄ijmt is i.i.d. Type 1 Extreme Value, and 0 ≤ η < 1 is

a nesting parameter that proxies for the degree of preference correlation within a group.

This assumption on the structure of the idiosyncratic preference shocks results in pre-

dicted market shares that follow the usual nested logit closed form, which I include in Section

4.1. Following Berry (1994), it is possible to invert predicted market shares as follows:

log
(
msjmt(smt)

)
− log

(
ms0mt(smt)

)
= δjmt − δ0mt + η log

(
m̄sjmt|g(smt)

)
(C3)

where msjmt is firm j’s predicted share of market m in period t; ms0mt is the predicted

outside share in market m in period t; and m̄sjmt|g is firm j’s conditional within-group share

in market m in period t (i.e., the firm’s inside share).

C.2 Ex Ante Value Function

Taking (C3) to the data requires a closed form for households’ ex ante value function. This

requires an approach to handling the expectation operator in (C2), which integrates over

uncertainty about the next period state variables. One standard approach (applied in the
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dynamic supply model in the text) is to specify and estimate an explicit stochastic process

for the state variables. However, for the purposes of flexibility in this dynamic demand

model, I follow De Groote and Verboven (2019) and decompose the expected ex ante value

function into a realized value function and a short run prediction error:

emt ≡ V (smt+1)− E
[
V (smt+1|smt)

]
(C4)

where I assume that households’ expectations are on average correct (i.e., households have

rational expectations) such that emt is mean zero.

Hotz and Miller (1993) and Arcidiacono and Miller (2011) show that it is possible to

express continuation values as functions of the conditional choice probabilities for one of the

terminating options, say j = j′. Normalizing the flow utility of non-adoption to the product

of Euler’s constant and the common discount factor, i.e., u0mt+0.577β = 0, Arcidiacono and

Miller (2011) show that the assumption of a nested logit error structure provides a helpful

closed form expression for the value function. This combined with the rational expectations

assumption results in the following closed form for the mean utility of non-adoption:

δ0mt = E
[
V (smt+1|smt)

]
= β

(
δj′mt+1(smt+1)− log

(
msj′mt+1(smt+1)

)
− η
(
log
(
msgmt+1(smt+1)

)
− log

(
msj′mt+1(smt+1)

))
− emt

) (C5)

where msgmt+1(smt+1) is the inside group share (i.e., the probability of adoption) in market

m and period t.

C.3 Estimating Equation

Combining (C1), (C3), and (C5) and rearranging terms gives the following equation:

log
(msjmt
ms0mt

)
− β log(msj′mt+1)

= α
(
(pjmt − βpj′mt+1)− (rjmt − βrj′mt+1)

)
+ η
(
log(m̄sjmt|g) + β

(
log(msgmt+1)− log(msj′mt+1)

))
+
(
ξjmt − βξj′mt+1

)
︸ ︷︷ ︸

≡ξ̃jmt

+
(
ξ̄j − βξ̄j′

)
︸ ︷︷ ︸

≡ξ̃j

+
(
ξ̄t − βξ̄t+1

)
︸ ︷︷ ︸

≡ξ̃t

+ βemt︸︷︷︸
mean zero

(C6)

A-25



Table C1. Estimated Demand Parameters from a
Dynamic Model

(1)

’Dynamic’ Price/Income −0.448
(0.160)

Nesting Parameter 0.968
(0.036)

Firm FE Yes
Year FE Yes
Observations 16,825
R2 0.799
F-test (1st stage), Nesting Parameter 46.2
F-test (1st stage), ’Dynamic’ Price/Income 2,256.1

Notes: Estimation follows the procedure outlined in Ap-
pendix C. I divide prices and rebates by county-quarter
mean income whereas for comparison to the static de-
mand estimates in Table 2. Standard errors clustered
by county are reported in parentheses.

The above estimating equation (C6) is a function of data—including current period and lead

values of market shares, prices, and rebates—and the target parameters, (α, η), which I can

estimate via ordinary least squares.

Two issues remain before implementing (C6): the choice of reference option, j′, and the

treatment of the scalar unobservable terms, (ξ̃jmt, ξ̃j, ξ̃t). In terms of the reference option,

an easy solution would be to use a universal installer that appears across markets. Unfor-

tunately, there is no single installer that operates in each county-quarter in my data. As a

result, I follow Bollinger and Gillingham (2019) and use a market-specific next-period av-

erage for the values of market shares and state variables of the reference option that enter

(C6). This revised estimating equation converges asymptotically to (C6).

To account for the scalar unobservable terms, I include firm and time fixed effects when

implementing (C6). This leaves the scalar unobservable ξ̃jmt, which generates a set of anal-

ogous endogeneity concerns to that associated with the static demand model in the text. I

therefore estimate my revised estimating equation (C6) via two-stage least squares, with the

same set of demand instruments as those that I outline in Section 5.1.1 of the text.

C.4 Results

I report estimates of the main target parameters in Table C1. Overall, the results are

qualitatively consistent with the static demand estimates reported in Column (1) of Table

2. Note that I divide prices and rebates by the county-quarter mean income for the sake
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Figure C1. Comparison of Static and Dynamic Demand Elasticities

Notes: This figure compares the model-predicted, short-run price elasticities of demand using the static
demand estimates from Column (1) of Table 2 (left panel) and the dynamic demand estimates from
Table C1. The overlaid line shows a cubic b-spline fitted to the short-run price elasticity estimates.

of direct comparison with the static models in the main text. The estimate of the nesting

parameter from the dynamic model is slightly larger, but indistinguishable from that from

the analogous static model. The first-stage F -statistics for both the nesting parameter and

price parameter are large in magnitude.

To assess the performance of the static demand model that I use in the text as a reduced

form for dynamic demand, I plot the implied short-run elasticities from the dynamic esti-

mates in Table C1 alongside those from the analogous static model. As shown in Figure C1,

the static model reasonably matches both the level and shape of demand elasticities over

time. While the short-run elasticities from the dynamic demand estimates are in general

larger in magnitude—the median short-run elasticity from the dynamic estimates is −2.07

compared with −1.42 for the analogous static estimates—both are within the range of pre-

viously published static estimates (see Figure A3) and the difference between the two is

relatively minor. Figure C1 suggests that the reduced form demand model used in the main

analysis in the text offers a reasonable approximation.
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D Estimating the Exit Policy Function

I estimate firms’ exit policy function using a logit regression:

Pr(χxjmt = 1|smt) =
exp

(
hj(smt)

)
1 + exp

(
hj(smt)

)
where χxjmt equals 1 if firm j exits market m in period t and 0 otherwise and hj(smt) is a

flexible function of the states. Obtaining consistent estimates of the exit policy function is

important for consistent estimation of the dynamic parameters in the second stage. I there-

fore follow the data-driven approach of Gerarden (2022) to determine the functional form

of hj(smt) when estimating firms’ exit policies. This approach has the benefit of optimizing

the tradeoff between a flexible specification and the challenges associated with overfitting.

In particular, I begin by identifying a large set of candidate regressors to use in hj(smt).

These include quadratic polynomials of the full set of state variables and the complete set of

pairwise interactions between these terms.38 I also include county and quarter fixed effects.

I then use LASSO for variable selection. Specifically, I model the discrete decision to exit

using the following penalized maximum likelihood:

min
µ

−

[
1

N

∑
j,m,t

χxjmthj(smt;µ)− log
(
1− exp

(
hj(smt;µ)

))]
+ λ||µ||1

I select the tuning parameter, λ, by leave-one-out k-fold cross validation with k = 10. Figure

D1 shows the resulting estimated binomial deviance for different values of λ.

This identifies a set of non-zero regressors, h̃j(smt; µ̃). I then model the discrete exit

decision using a logit model with the non-zero regressors selected in the first stage and

estimate the parameters on the remaining regressors via maximum likelihood:

min
µ̃

−

[
1

N

∑
j,m,t

χxjmth̃j(smt; µ̃)− log
(
1− exp

(
h̃j(smt; µ̃)

))]

The final step logit model has an estimated binomial deviance of 12.34%. The resulting

parameter estimates allow me to fit exit probabilities for each incumbent observed in my

data. Figure D2 shows the density of fitted exit probabilities for incumbents that I observe

continue and incumbents that I observe exit.

38I include quadratic polynomials of the following variables and their pairwise interactions: prices, own
experience, other firms’ experience within a county, other firms’ experience outside a county, hardware cost,
the average hardware costs of other firms within a county, quality, the average quality of other firms within
a county, the county-quarter inclusive value, and the aggregate demand state.
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Figure D1. First-step Tuning Parameter Selection via k-fold Cross-validation

Notes: This figure shows binomial deviance for different values of λ, where binomial deviance
is calculated via leave-one-out k-fold cross-validation with k = 10. The vertical dashed line
shows the value of λ that corresponds to the minimum estimated binomial deviance.

Figure D2. Density of Fitted Exit Probabilities

Notes: This figure shows the density of the resulting fitted exit probabilities separately for
incumbents that I observe continue and incumbents that I observe exit.
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E Value Function Approximation

In light of the fact that the conditions for optimal quantity-setting, exit, and entry all depend

on Vj(smt), estimation of the target structural parameters requires solving for the unknown

value function. As discussed in the text, I approximate the value function via B-spline ba-

sis functions. Value function approximation is appealing in my setting for several reasons.

First, given the high dimensionality of the model’s continuous state space, conventional ap-

proaches that rely on discretization of the states remain computationally-intensive and can

produce non-trivial approximation errors in this setting. Second, given that the value func-

tion implicitly defined by the Bellman equation in this setting is nonlinear in parameters,

popular forward simulation approaches are computationally-infeasible in this setting. This

non-linearity is due to the fact that static profits are a function marginal production costs,

which are nonlinear in the learning parameters. Moreover, Barwick and Pathak (2015) and

Kalouptsidi (2018) provide Monte Carlo evidence to suggest that value function approxima-

tions perform well in estimating dynamic games.

As shown in the main text, given my assumption that scrap values, ϕjmt are i.i.d. expo-

nential, it is possible to write the value function prior to the realization of ϕjmt as

Vj(smt) = Eϕ[Vj(smt, ϕjmt)] = Eϕ[πj(smt) + max{ϕjmt, CVj(smt)}]

= πj(smt) + pxj (smt)Eϕ[ϕjmt|ϕjmt > CVj(smt)] + (1− pxj (smt))CVj(smt)

= πj(smt) + pxj (smt)σϕ + CVj(smt) (E1)

where the final line follows from the fact that Eϕ[ϕjmt|ϕjmt > CVj(smt)] = σϕ + CVj(smt) as

shown by Pakes et al. (2007).

Having obtained estimates of the static demand parameters, exit policy functions, and

state transition processes in the first step of estimation, it is possible to obtain a flexible

approximation of the value function implicitly defined by the Bellman equation (E1) following

recent work in the dynamic games literature (e.g., Barwick et al. (2021)). In particular, given

the smoothness of the value function in this context, it is possible to approximate the value

function arbitrarily well using L B-spline basis functions blj(smt):

Vj(smt) ≃
L∑
l=1

λlb
l
j(smt) CVj(smt) ≃ β

L∑
l=1

λlE[blj(smt+1)|smt] (E2)

where blj(smt) are basis functions of the state variables and λl are coefficients to be estimated.
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Plugging (E2) into (E1) gives

L∑
l=1

λlb
l
j(smt) ≃ πj(smt; θ

c) + pxj (smt)σϕ + β

L∑
l=1

λlE[blj(smt+1)|smt] (E3)

where θc = (c0, θ
E, γ) are the production cost parameters governing learning. From (E3), it

is possible to recover estimates λ̂l using data, estimated exit policy functions, and estimated

state transitions for a given set of parameter values (θc, σϕ):

{λ̂l}Ll=1 = argmin
λl

∣∣∣∣Vj(smt;λ)− πj(smt; θ
c)− p̂xj (smt)σϕ − CVj(smt;λ)

∣∣∣∣
2

(E4)

where I am choosing approximating coefficients, {λ̂l}Ll=1, that minimize the L2 norm of

violations of the Bellman equation (E1).

Firm value functions are a function of a high-dimensional state vector. To ease the com-

putational burden associated with approximating firm value functions, I follow the model’s

simplifying assumption about the approximating equilibrium concept and use moments of the

state variables of a firm’s rivals when forming approximating basis functions. In particular,

I form basis functions of the following variables to approximate firms’ value functions:

• Ejmt: firm j’s own experience in market m in period t

• Ēm
jmt =

∑
k ̸=j Ekmt: total experience of firm j’s rivals in market m in period t

• Ēo
jmt =

∑
l ̸=m

∑
k ̸=j Eklt: total experience of firm j’s rivals in markets outside of market

m in period t

• hjmt: firm j’s average hardware costs in market m in period t

• h̄kmt and h̄klt,∀k ̸= j, l ̸= m: within- and out-of-county averages of firm j’s rival firms’

hardware costs in period t

• ξjmt: firm j’s quality in market m in period t

• ξ̄kmt and ξ̄klt,∀k ̸= j, l ̸= m: within- and out-of-county averages of firm j’s rival firms’

quality in period t

• dmt: aggregate demand in market m in period t

• Imt: inclusive value in market m in period t
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I augment the basis functions formed with these 11 variables with the full set of county

fixed effects when approximating firms’ value functions in order to account for differences in

expected discounted returns across counties not captured by the above variables.

To select the basis function of the above 11 variables, I test how well B-splines of different

orders with different percentile knots fit observed revenue data, since value functions measure

expected discounted profits which are functions of revenues. I ultimately select third-order

B-splines (i.e., quadratic piecewise polynomials with 3 interior knots). I approximate the ex-

pectation in (E3) by averaging state values over 1000 draws of the estimated state transition

processes.

A key remaining issue is the set of state realizations on which to evaluate the approximate

Bellman equation E3. Similar to Sweeting (2013) and Barwick et al. (2021), I construct a

sample of state realizations that includes both all states observed in the data as well as a set

of states randomly drawn to span the support of the state variables. In particular, I draw

50,000 additional realizations of the state variables where I independently draw at random

each state variable from its empirical support. I then used the fitted exit policy function to

predict exit probabilities at each of these additional realizations of the state and estimate

simple linear fits of prices and quantities on observed realizations of the state to allow me

to predict profits at these simulated states. I ensure that these additional realizations of

the state are uniformly distributed across counties and quarters in my estimation period. I

estimate {λ̂l}Ll=1 via E4 using the full set of observed and simulated realizations of the state.

These additional states ensure that I obtain a good approximation of the value function in

estimation for two reasons. First, some states (for example, hardware costs and experience)

are correlated in the observed data, which makes it difficult to separately identify the basis

function coefficients on these variables. Second, parts of the state space are relatively sparse:

for instance, certain counties have relatively few observations spanning small regions of the

state space in the realized data. These simulated states are therefore quite important in

providing a good approximation of the value function.

Figure E1 shows binned scatterplots and third order polynomial fits of the relationship

between nine state variabels and the final value function estimates from the main production

and exit cost parameter estimtes reported in column (2) of Table 3.
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Figure E1. Relationship between State Variables and Value Function Estimates

Notes: This figure shows binned scatterplots and third order polynomial fits of the relationship between
nine state variables and the final value function estimates from the main production and exit cost
parameter estimates reported in column (2) of Table 3. Value function approximation follows the
procedure discussed in detail in Appendix E. Value function estimates are reported in millions of 2013
USD.
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F Counterfactual Solution Method

Simulating counterfactual policy environments requires a method for solving the model. My

approach to solve the model builds on the method of Sweeting (2013), which adapts para-

metric policy iteration (Benitez-Silva et al., 2000) to allow for value function approximation.

My approach is similar to other counterfactual solution methods in applied settings in the

literature (Barwick et al., 2021; Gerarden, 2022).

As was the case in estimation, the high-dimensionality and continuous nature of the

state space presents a challenge in solving the model. As a result, I maintain the approach

to value function approximation outlined in Appendix E.39 Solving the model involves two

steps: first, solving for the new Bellman equation, policy functions, and product market

equilibrium, and second simulating the industry forward one period. In each counterfactual

scenario, I initiate this two-step procedure at the observed data in the first period of my

main estimation sample—the first quarter of 2008—and then repeat the two-step procedure

until I reach the end of the main estimation—the last quarter of 2013.

F.1 Solving a Single Period

I implement the first step of this counterfactual solution method via a fixed point algorithm.

For a given iteration of this fixed point algorithm, i, I take the following steps:

1. Compute static profits at each state, πij(smt; θ̂
c), where θ̂c = (ĉ0, θ̂

E, γ̂) are the preferred

production cost parameter estimates, using equilibrium prices, pij(smt); market shares,

msij(smt); and continuation values, CV i
j (smt) from the previous fixed point iteration.

2. Solve for the value function approximating coefficients, λ̂i+1 using

V i+1
j (smt;λ

i+1) = πij(smt; θ̂
c) + σ̂ϕp

x,i
j (smt) + CV i+1

j (smt;λ
i+1)

where πij(smt; θ̂
c) is from step 1, σ̂ϕ corresponds to the preferred exit parameter esti-

mate, px,ij (smt) is the equilibrium exit policy function from the previous iteration, and

I form the expectation in CV i+1
j (smt;λ

i+1) by averaging state values over 1000 draws

from the state transition processes estimated in the first stage.

39I make several minor changes to the value function approximation approach used in estimation. In
particular, I do not use simulated states to estimate the approximating coefficients. This is due to the fact
that the approach to solving the model requires finding new equilibrium exit policies and equilibrium in the
product market via fixed point iteration. Whereas it was simple to use first stage estimates to fit simulated
exit policies and product market variables at simulated states, doing so for a large number of simulated states
presents a computational challenge in solving the model, so I prioritize approximating the value function at
the observed states.
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3. Update the exit policy function, px,i+1
j (smt), using ĈV

i+1

j (smt; λ̂
i+1) and the closed form

solution for firms’ exit probabilities.

4. Update equilibrium market shares, msi+1
j (smt), and prices, pi+1

j (smt), by fixed point

iteration using the closed form for market shares from the demand model and firms’

quantity-setting first order condition, the latter of which uses ĈV
i+1

j (smt; λ̂
i+1) in cal-

culating the optimal dynamic markdown term.40

5. Check whether ||px,i+1(smt) − px,i(smt)|| < tol, where px,i+1(smt) is the stacked vector

of firms’ exit policy functions and tol = 10−4. If this condition is met, the iterations

stop; if not, iteration i+ 1 starts with step 1 above.

The above procedure produces conditional exit probabilities at each state in a given period

as well as value function approximating coefficients. I use these value function approximating

coefficients and a set of assumptions about the states of potential entrants to calculate

conditional entry probabilities for that period. In particular, I use the resulting value function

approximating coefficients and expected values of the state variables in the next period for all

potential entrants to calculate conditional entry probabilities, where expected values of the

state variables in the next period are calculated using the observed aggregate state variables

and assuming that entrants are endowed with random values of the non-deterministic state

variables drawn from the empirical distribution of observed states.41

F.2 Simulating Forward

Armed with conditional exit and entry probabilities for incumbents and potential entrants

in a given period from the first step, I can then implement the second step of solving the

model: simulating the industry forward one period. In particular, I take a single draw from

the conditional exit and entry probabilities and then implement firms’ resulting, discrete exit

and entry decisions. For the next period’s new incumbents and potential entrants, I then take

a single draw from the state transition processes estimated in the first stage of estimation.

The simulated industry then proceeds to the next period and the fixed point algorithm

outlined above is used to solve for policy functions in the next period. As noted above, I

begin the counterfactual solution process at the observed data in period 1 of my estimation

sample, 2008 Q1. I then repeat this process of solving a single period and simulating forward

40In practice, convergence of the fixed point iteration on firms’ quantity-setting first order condition is
reliable and rapid. I iterate this procedure until the norm of the difference of the price vectors from successive
iterations falls below 10−10.

41Naturally, entrants enter with zero experience. As in estimation, I calculate the expectation of future
state variables for entrants conditional on entry by averaging state values over 1000 draws from the state
transition processes estimated in the first stage.
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until the final period of my estimation sample, 2013 Q4. I therefore repeat this procedure 24

times, simulating the model forward 6 years or 24 quarters. Given that each time I simulate

the industry forward I take single draws from the conditional exit and entry probabilities as

well as the state transition processes, I repeat this process of simulating the model forward 6

years multiple times and average the results across the full set of forward-simulated industries.

In practice, I repeat this process of simulating the model forward 6 years 60 distinct times

for each counterfactual scenario and then average key outcomes across all 60 model runs.

One important idiosyncrasy in this step that is worth noting is how I model installed

capacity. Given that my price and rebate fields are denominated on a per watt basis, I need

to know firms’ total installed capacity in watts in order to calculate firm profits; however,

my demand model only predicts adoption, not the size of individual installed systems. In

estimation, I observe total installed capacity in the data; however, nothing in my model

allows me to predict this field in solving counterfactuals. Moreover, given that I define

experience in terms of cumulative installed capacity (in watts), knowing watts of capacity

installed each period is important for updating experience levels each period. I therefore

take the simple approach of assuming that each installation predicted by my demand model

has a capacity equal to the sample average system capacity in my processed estimation data,

which is around 4-5 kW.

F.3 Subsidy Levels

Given that the main policy counterfactuals of interest involve adjusting the subsidy envi-

ronment, it is worth discussing how I treat subsidy levels in solving counterfactuals. In the

case of CSI rebates, despite the fact that these subsidy levels are conditional on cumula-

tive installed capacity (see Figure A2), which itself is defined by lagged demand for solar

PV installations, I choose to not endogenize the timing of CSI rebate changes when solving

counterfactual scenarios with the CSI in place. While I could easily endogenize the CSI step

changes in my model given that my model predicts demand for solar PV installations each

period, I choose not to given that I do not explicitly model system capacity as discussed

above. Moreover, the fact that I omit self-installations and subset the estimation data as

described in Appendix B, even with my assumption about counterfactual installed system

capacity described above, I would be guaranteed to under-predict cumulative installed ca-

pacity and therefore implement counterfactual subsidy levels that are higher than they likely

should be. I therefore hold fixed the date of each CSI rebate step change from the observed

data (shown in Figure 2) in any counterfactual that implements the CSI.

Implementing the federal investment tax credit (ITC) is relatively straightforward as

this is just a fixed proportion of the post-rebate price. Implementing net energy meter-
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ing (NEM) counterfactuals is more challenging given that utilities directly recover NEM

payments through retail electricity rates. As a result, I hold NEM fixed in place in all

counterfactuals.

F.4 Counterfactual Environmental Damages

Simulating the model forward as described above generates a set of key outcomes for each

counterfactual scenario, including market structure outcomes (number of entries, number

of exits, market concentration, etc.) as well counts of installed systems and measures of

consumer surplus predicted from the demand model and total profits and cost components

predicted from the supply model.

Given that a key policy justification for incentivizing the adoption of solar PV is to

reduce electricity generation from legacy, alternative electricity generation sources such as

coal and natural gas-fired power plants, I use the quantities of solar PV adoption predicted

for each counterfactual scenario to conduct a back-of-the-envelope calculation of any avoided

environmental damages from the solar PV subsidies. The external social benefits of solar PV

subsidies are a function of the quantity of solar PV adopted due to subsidies, the amount of

electricity produced by these systems, and the external damages associated with alternative

electricity generation sources displaced by this additional solar capacity. I use estimates

of the marginal environmental benefits of additional solar capacity in the US from Sexton

et al. (2021). These estimates account for both the marginal external damages from harmful

local air pollutants as well as carbon dioxide. Using rich data on electricity generation, solar

insolation, and air pollution transport, Sexton et al. (2021) produce spatially-differentiated

estimates of the marginal environmental benefits of additional solar capacity that account

for substantial heterogeneity in solar generation, displaced pollution emissions, and marginal

costs of electricity over space and time. These off-the-shelf estimates therefore allow me

to account for variation across the state of California in not only the lifetime generation

potential of additional solar capacity, but also characteristics of the electricity grid.
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