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Increasing the adoption of clean, energy-efficient technologies is a key step in decar-

bonizing industrial economies. Subsidies are a common policy tool for supporting growth

in clean technologies: according to data collected by the World Bank, the number of gov-

ernment subsidy programs aimed at reducing emissions and promoting clean technologies

increased 10% from 2018-2022 (World Bank Group, 2024). Despite policymakers’ revealed

preference for direct public support for various clean technologies, relatively little work ex-

amines possible interactions between these policies. For example, when clean technologies

are complementary goods, subsidizing the adoption of one technology increases demand for

its complement. As public interest in clean technology adoption increases, the policy debate

will prompt questions around the efficacy of these interacting policies.

This paper explores the implications of interactions between technologies for optimal

policy design, with a particular focus on new, clean technologies. We focus on potential in-

teractions between policies targeting residential adoption of plug-in electric vehicles (PEV)

and distributed solar photovoltaics (PV). We begin by developing a theory of second-best

policy for two clean technologies that replace dirty technologies with distinct externalities

when first-best Pigouvian taxes are infeasible. We demonstrate that the optimal second-

best policy regime is a set of clean technology subsidies which depend on cross-technology

substitution patterns. Ignoring these interactions is welfare-reducing due to inframarginal

take-up of the clean technology subsidies and the optimal policy regime targets the more

price-responsive clean technology. We use a combination of revealed and stated preference

data from a representative survey of California households to document a strong complemen-

tarity between solar PV and PEVs: a 10% increase in the price of each technology results

in a 1-2% decrease in demand for the other clean technology for the most price responsive

households.

Economic theory has long held that separate market failures require separate policy

instruments. This result, referred to as the “Tinbergen rule” (Tinbergen, 1952), implies

that policymakers should adopt a unique policy instrument for each externality-generating

technology. However, this result ignores potential interactions between technologies. For

example, complementarities are known to influence demand and welfare across many classes

of technology (Crawford and Yurukoglu, 2012; Gentzkow, 2007; Samuelson, 1974). In such

settings, implementing independent policy instruments aimed at increasing the adoption

of complementary technologies ignores potential impacts of each policy instrument on the

complementary good. We aim to explore whether the concept of instrument independence

holds in the presence of potential spillover effects across different technology market failures.

Solar PV and PEVs are both key technologies to mitigating climate change due to their

ability to displace conventional, carbon-intensive forms of electricity generation and trans-
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portation. We focus our analysis on these technologies for two reasons. First, these tech-

nologies have long been the target of generous public subsidy programs. In the US, state and

local governments and electrical utilities provided over $40 billion in upfront subsidies for

solar PV adoption from 2000 to 2020 (Barbose et al., 2024). According to the US Depart-

ment of Energy, over 575 state and federal zero emissions vehicle (ZEV) incentive programs

were enacted or renewed over that same period. Policymakers’ emphasis on subsidies likely

reflects political constraints on the use of first-best policy instruments such as a carbon tax.

Second, there are several channels through which these clean technologies may comple-

ment one another. First, there is a technological channel through which solar adoption

provides households with relatively low marginal cost electricity for PEV charging, thereby

making PEV adoption more attractive. Second, there is a policy channel where solar PV

adopting households in many jurisdictions—such as California—are able to reduce their

marginal costs for electricity through a program known as net energy metering (NEM). For

households with an PEV, this can make PV adoption more appealing as it can help reduce

PEV charging costs. In either case, we are likely to observe an increase in adoption of one

technology due to a decrease in the price of the other, which is the standard definition of

complements: a negative compensated cross-price elasticity of demand (Samuelson, 1974).

Finally, it is possible that there are correlations between household demand for each tech-

nology and unobservable or observable consumer attributes, such as income or idiosyncratic

preferences for clean goods.

We build on the extensive public finance literature on optimal taxation to explore the

implications of these potential complementarities for optimal, second-best policymaking

(Sandmo, 1975; Wijkander, 1985). We develop a stylized model of demand for household

electricity and transportation consumption that allows for the derivation of optimal uncon-

strained (i.e., first-best) and constrained (i.e., second-best) policy instruments. In the model,

a representative household allocates consumption between clean and dirty substitutes for

electricity and transportation as well as a numeraire. Each of the two dirty goods produces

a differentiated externality, with the externality proportional to the aggregate consumption

of that good. A social planner chooses a portfolio of per-unit taxes or subsidies and recycles

tax revenues via equal lump-sum transfers. With no constraints on the values of these policy

instruments, the model recovers a foundational result: the optimal policy portfolio is to set

direct Pigouvian taxes on the externality-producing goods. This first-best policy follows the

Tinbergen rule, where the Pigouvian taxes are set independent of one another.

Assuming that direct Pigouvian taxation is infeasible—say, due to political constraints—

the model delivers three results. First, the optimal constrained policy is a set of indirect

Pigouvian subsidies which account for cross-technology interactions. Thus, the second-best
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policy no longer treats the two externality problems as independent. Second assuming that

the the two clean technologies are complements, the second-best subsidy will be less than the

subsidy set ignoring this interaction when the complementarity is sufficiently strong. This

comes from the fact that a strong complementarity implies a greater degree of infra-marginal

take-up of the subsidies. Finally, the second-best policy regime places a larger subsidy on

the clean technology with the greater behavioral response, inclusive of both the resulting

direct substitution and indirect impact through the technology complementarity.

A key implication of our stylized model is the importance of considering the full substitu-

tion matrix when setting second-best policies for interacting clean technologies. We develop

and estimate a simple static discrete choice model of households’ co-adoption decisions for

solar PV and PEVs in an empirical context. We focus our empirical analysis on the case of

California, which has relatively high adoption rates for both technologies and a long history

of state-level adoption incentives for various clean technologies.

We develop a flexible model of demand for complementary goods based on Gentzkow

(2007) and use data from the 2013 and 2017 waves of the California Vehicle Survey to

recover reasonable estimates of empirical substitution patterns between solar PV and PEVs.

We find evidence of an empirical complementarity between solar PV and PEVs. We estimate

that a 10% increase in solar PV prices leads to a 5.2% decrease in solar PV consumption

and a 0.3% decrease in PEV consumption on average. A similar 10% increase in PEV

prices leads to a 4.3% decrease in PEV consumption and a 0.5% in PV consumption on

average. Interestingly, these average elasticities mask substantial heterogeneity, with low

income households—the most price responsive households—reducing consumption by 1-2%

in response to a change in the price of the other clean technology.

We contribute to the broad literature on product complementarities, which dates back

to early work by Hicks and Allen (1934). More recent empirical work documents demand

for bundles of complementary goods in various settings including retail (Dubé, 2004; Hendel,

1999; Iaria and Wang, 2020; Kwak et al., 2015; Lee et al., 2013), automobiles (Manski

and Sherman, 1980), telecommunications, (Crawford and Yurukoglu, 2012; Crawford et al.,

2018; Grzybowski and Verboven, 2016; Liu et al., 2010), media subscriptions (Gentzkow,

2007; Nevo et al., 2005), gaming (Lee, 2013), and technology adoption (Augereau et al.,

2006; Kretschmer et al., 2012). Bollinger et al. (2023) document a strong complementarity

between solar PV and residential battery storage. We build on this literature by drawing

out the implications of these empirical complementarities for policymaking and welfare in

the presence of externalities.

Our work emphasizes the importance of understanding potential cross-technology inter-

actions in the design of subsidy policies. A large and growing literature studies the economics
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of solar PV policies, focusing primarily on the impact of subsidies on adoption rates, finding

that while consumer subsidies have increased the adoption of solar PV, these policies are not

justified by the static environmental benefits of adoption alone (Borenstein, 2017; De Groote

and Verboven, 2019; Gillingham and Tsvetanov, 2019). Existing work explores the effect of

various policy and non-policy incentives on PEV adoption (Muehlegger and Rapson, 2022,

2023; Rapson and Muehlegger, 2023). Our work emphasizes the importance of considering

the effects of co-adoption when designing and evaluating clean technology subsidies.

The remainder of the paper is organized as follows. Section 1 provides background

information on solar PV and PEV policies in the US. Section 2 develops the stylized model

of optimal policy for interacting technologies, including our main theoretical contributions.

Section 3 develops and estimates a model of co-adoption for solar and PEVs in California

and Section 4 concludes.

1 Background: Overlapping Incentives for Solar and EVs

The solar and electric vehicle industries have grown rapidly in recent decades. From 2000

to 2022, global solar capacity increased from just under 1 gigawatt to over 1 terrawatt, a

1000-fold increase (IRENA, 2023). PEVs have experienced similar growth, accounting for

nearly 20% of global new car sales in 2023, a 10-fold increase from 2018 (International Energy

Agency, 2024). These trends of rapid adoption are in large part due to substantial reductions

in the costs of these technologies: the price of solar modules—the building blocks of solar

PV systems—declined over 99% from 1975 to 2021 (IRENA, 2023; Nemet, 2019) and the

price of lithium-ion batteries—a major component to PEVs—decreased 97% from 1991 to

2018 (Ziegler and Trancik, 2021).

Generous public subsidies are another major factor driving increased adoption of these

technologies. Consumer subsidies for PEV adoption totaled $43 billion globally in 2022

(International Energy Agency, 2024). Estimates of public support for solar PV are similarly

high: in 2017, global public support for solar PV totaled $61 billion (Taylor, 2020). The

location of generous public subsidies for each technology also often overlaps. For example,

the Inflation Reduction Act of 2022 offers individuals a 30% non-refundable federal tax credit

on the cost of an installed solar PV system as well as subsidies of up to $7,500 per PEV

for eligible purchases. There is also similar overlap at the state level within the US: as

shown in Appendix Figure C1, there is a strong positive relationship between the amount

of funding for solar PV adoption and the number of zero-emissions vehicle (ZEV)—which

includes PEVs—policies enacted over the period 2000-2020.

Public incentives for clean technologies take numerous forms. Solar PV and plug-in
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Figure 1. Co-adoption of ZEVs and Solar PV in California, 2017

Notes: This figure shows the share of respondents in the 2017 California Vehicle Survey that own a zero
emissions vehicle (ZEV) within 7 different annual household income bins, separately for households with
and without solar installed. Source: 2015-2017 California Vehicle Survey, California Energy Commission.

electric vehicles are both capital-intensive goods, so many public policies aim to reduce the

upfront costs of these investments. As demonstrated by the Inflation Reduction Act, these

can take the form of either a tax credit offsetting some portion of the investment cost or

an upfront cash rebate. Other policies target the value of the technology over time. In

the case of solar PV, this includes NEM, feed-in tariffs, and net-billing tariffs, all of which

determine some form of compensation for any excess electricity sent from a distributed

solar PV system to the grid. Similar policies also exist for electric vehicles, though are less

common in practice. These include the introduction of time-of-use pricing for home electricity

consumption or PEV-specific retail electricity rates which aim to compensate households for

charging vehicles during off peak hours by lowering their marginal charging costs relative to

some counterfactual baseline.

The increasing prevalence and coincidence of solar PV and PEV subsidies raises questions

around possible interactions between these incentives. There is a natural technical channel

through which these two clean technologies may complement one another: solar adoption

provides households with relatively low marginal cost electricity for PEV charging, making

PEV adoption attractive. Co-adoption may also be made more attractive by policy itself. In

jurisdictions where individuals can lower their electricity costs through NEM, feed-in tariffs,
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or net-billing costs, PEV adoption may become more appealing for PV-owning households

and vice versa.

Existing surveys from California, a jurisdiction with substantial adoption as well as public

financial support for both technologies, provides suggestive evidence of a complementarity

between solar PV and PEVs. The California Center for Sustainable Energy’s PEV owner

survey indicates that 39% of PEV owners have installed solar PV and a further 17% are

planning to adopt solar in the near future. Data from the 2017 wave of the California

Energy Commission’s California Vehicle Survey finds similar patterns of co-adoption: as

shown in Figure 1, solar PV households are nearly four times as likely to own a PEV. Given

that these technologies have substantial upfront investment costs, it is possible that this

co-adoption is simply a function of income; however, as shown in Figure 1, this relationship

holds throughout the income distribution.

In light of this suggestive evidence of complementary demand for these technologies and

the substantial overlap in existing, generous public subsidy programs, we seek to better

understand the theoretical implications for subsidy design.

2 A Model of Optimal Policy for Interacting Technologies

We develop a stylized model of demand for household electricity and transportation consump-

tion that allows for the derivation of optimal unconstrained (i.e., first-best) and constrained

(i.e., second best) policy instruments. While both dirty electricity and transportation gen-

erate external climate costs, there are additional, idiosyncratic externalities associated with

household electricity and transportation consumption. To account for this, we model house-

holds’ consumption of each dirty technology as resulting in different externalities.

2.1 Model setup

Consider a model with N identical households where a representative household consumes

five goods: clean electricity (x1), dirty electricity (x2), clean transportation (y1), dirty trans-

portation (y2), and a numeraire (µ). The five goods have prices p = (px1 , p
x
2 , p

y
1, p

y
2, 1) and the

electricity and transportation goods are taxed (or subsidized) at rates τ = (τx1 , τ
x
2 , τ

y
1 , τ

y
2 ).

Each of the two dirty goods produces a differentiated externality, with each externality
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proportional to the aggregate consumption of that good:1

Ex = exNx2 Ey = eyNy2

The representative household maximizes a utility function which is separable in exter-

nalities and linear in µ. The utility function takes the following form

U = u(x1, x2, y1, y2)−N [exx2 + eyy2] + µ (1)

where u(·) is a concave, C2 (i.e., twice continuously differentiable) function. Households

maximize their utility subject to the following budget constraint:

(px1 + τx1 )x1 + (px2 + τx2 )x2 + (py1 + τ y1 )y1 + (py2 + τ y2 )y2 + µ = m (2)

wherem is the household’s total income. We assume that the non-negativity constraint µ ≥ 0

is nonbinding. Furthermore, we assume that N is sufficiently large such that households do

not internalize their impact on aggregate consumption of the dirty goods (i.e., ∂Ex

∂x2
= 0).

With these assumptions, it is possible to write the first-order conditions for the representative

household as follows:

x1

(
∂u

∂x1

− px1 − τx1

)
= 0 x2

(
∂u

∂x2

− px2 − τx2

)
= 0

y1

(
∂u

∂y1
− py1 − τ y1

)
= 0 y2

(
∂u

∂y2
− py2 − τ y2

)
= 0

(3)

The first-order conditions given by (3) imply demand functions that are independent of both

income and the total externalities:

x1 = x1(p, τ ) x2 = x2(p, τ ) y1 = y1(p, τ ) y2 = y2(p, τ )

The absence of income effects implies that Hicksian demand functions are equal to Marshal-

lian demand functions. The model setup implies the following assumption:

Assumption 1. Clean electricity (x1) is a substitute for dirty electricity (x2) and clean

1The choice of differentiated externalities is motivated by the empirical differences between transportation
and residential electricity consumption externalities. In addition to varying intensities of greenhouse gas
emissions associated with consumption of transportation and electricity, each has distinct co-pollutants and
spillover costs unique to the technology class. Recent work also documents substantial spatial and temporal
heterogeneity in the external costs of dirty versus clean home electricity or transportation consumption
(Gillingham et al., 2024; Sexton et al., 2021).
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transportation (y1) is a substitute for dirty transportation (y2), i.e.

∂x1

∂px2
> 0

∂x2

∂px1
> 0

∂y1
∂py2

> 0
∂y2
∂py1

> 0

2.2 Social Planner’s Problem

The government chooses a portfolio of per-unit taxes or subsidies, τ = (τx1 , τ
x
2 , τ

y
1 , τ

y
2 ) ∈ R4.

For a given portfolio of policies, the government receives tax revenues

N [x1τ
x
1 + x2τ

x
2 + y1τ

y
1 + y2τ

y
2 ]

For simplicity, we assume tax revenues are recycled via equal lump-sum transfers.

The government’s problem is to maximize social welfare, which in this case is equivalent

to maximizing the representative household’s utility. The government therefore chooses τ

to maximize the sum of household utility from consuming electricity and transportation;

the disutility from electricity and transportation consumption externalities; income net of

household expenditures; and lump-sum transfers of tax revenues:

W (τ ) = u(x1, x2, y1, y2)−N [exx2 + eyy2] +m

− (px1 + τx1 )x1 − (px2 + τx2 )x2 − (py1 + τ y1 )y1

− (py2 + τ y2 )y2 + τx1 x1 + τx2 x2 + τ y1 y1 + τ y2 y2

(4)

subject to the first-order conditions (3). Differentiating (4) and using the household’s first-

order conditions (3) gives the following first-order conditions for the government’s problem:
∂x1

∂px1

∂x2

∂px1

∂y1
∂px1

∂y2
∂px1

∂x1

∂px2

∂x2

∂px2

∂y1
∂px2

∂y2
∂px2

∂x1

∂py1

∂x2

∂py1

∂y1
∂py1

∂y2
∂py1

∂x1

∂py2

∂x2

∂py2

∂y1
∂py2

∂y2
∂py2


︸ ︷︷ ︸

≡Ω


τx1

τx2

τ y1

τ y2

 = exN


∂x2

∂px1
∂x2

∂px2
∂x2

∂py1
∂x2

∂py2

+ eyN


∂y2
∂px1
∂y2
∂px2
∂y2
∂py1
∂y2
∂py2

 (5)

Where we make the standard neoclassical assumption of full tax salience, e.g., ∂x1

∂τx1
= ∂x1

∂px1
.

Assuming that the substitution matrix, Ω, is non-singular, then we can solve the linear

system (5) to find the optimal policy portfolio, τ ∗.
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2.3 Optimal Unconstrained Policy: Direct Pigouvian Taxation

If there are no constraints on the values of τ , then solving the linear system (5) gives the

following portfolio of optimal policies:

τx1
∗ = 0 τx2

∗ = exN τ y1
∗ = 0 τ y2

∗ = eyN (6)

With unconstrained policies, we obtain the intuitive result where only direct Pigouvian taxes

on the externality-producing goods are necessary. The level of the tax is the marginal external

cost of consumption for each of the two dirty technologies, x2 and y2. The optimal policy (6)

therefore replicates two well-known results: that separate externality market failures require

separate policy responses and the optimal policy to correct an externality is to impose a tax

equal to the marginal social cost of consuming the externality producing good.

2.4 Optimal Constrained Policy: Indirect Pigouvian Subsidies

We now turn to the case where direct taxation of the externality-producing goods is infea-

sible, i.e., τx2 = τ y2 = 0. Such a situation might arise for many reasons, including political

constraints on the application of a direct tax. In this case, the government can only regulate

the two externalities indirectly through the remaining two goods. The dimensionality of the

government’s problem is reduced so that they now solve the following linear system[
∂x1

∂px1

∂y1
∂px1

∂x1

∂py1

∂y1
∂py1

]
︸ ︷︷ ︸

≡Ω̃

[
τx1

τ y1

]
= exN

[
∂x2

∂px1
∂x2

∂py1

]
+ eyN

[
∂y2
∂px1
∂y2
∂py1

]
(7)

We use the linear system (7) to define two distinct policy-setting regimes. The first is a

scenario in which the government sets policy ignoring all interactions between the electricity

and transportation goods. In this case, the government’s problem becomes[
∂x1

∂px1
0

0 ∂y1
∂py1

][
τx1

τ y1

]
= exN

[
∂x2

∂px1

0

]
+ eyN

[
0
∂y2
∂py1

]

Ignoring the potential interactions between the two sets of goods (henceforth, the “naive”

constrained policy), the government sets the following policies:

τ̃x1 = exN

(
∂x2

∂px1

)(
∂x1

∂px1

)−1

τ̃ y1 = eyN

(
∂y2
∂py1

)(
∂y1
∂py1

)−1

(8)
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Ignoring the potential for interactions between the two sets of goods and if direct taxation of

the externality-producing goods is infeasible, the government sets taxes or subsidies equal to

the product of the marginal externality and the degree of complementarity or substitutability

between the clean and dirty goods separately for electricity and for transportation. From

Assumption 1 and the fact that ∂x1

∂px1
, ∂y1
∂py1

< 0, we know that (8) gives τ̃x1 < 0 and τ̃ y1 < 0.

Thus, since the clean goods are substitutes for the dirty goods, the government indirectly

targets the externality-producing goods by subsidizing the clean goods.

We now turn to the case where the government considers potential interactions between

the two sets of goods. Solving the system (7) gives the following optimal policies when direct

Pigouvian taxation is infeasible:

τ̄x1 =
exN

|Ω̃|

(
∂x2

∂px1

∂y1
∂py1

− ∂x2

∂py1

∂y1
∂px1

)
+

eyN

|Ω̃|

(
∂y2
∂px1

∂y1
∂py1

− ∂y2
∂py1

∂y1
∂px1

)
τ̄ y1 =

exN

|Ω̃|

(
∂x2

∂py1

∂x1

∂px1
− ∂x2

∂px1

∂x1

∂py1

)
+

eyN

|Ω̃|

(
∂y2
∂py1

∂x1

∂px1
− ∂y2

∂px1

∂x1

∂py1

) (9)

where |Ω̃| is the determinant of the substitution matrix, Ω̃. While the form of the optimal

policies given by (9) does not offer an immediate, intuitive interpretation, it does reveal a key

conceptual difference from the optimal policies defined by (6) and (8): when the government

takes potential interactions into consideration, the optimal corrective policies no longer treat

the two externality problems as independent.

2.5 With Strong Complementarity, Optimal Constrained Policy is Less than

Naive Subsidy

Comparing (8) and (9) allows us to determine the impact of ignoring potential interactions

between the two sets of goods. If such interactions exist and the government ignores them,

the policies given by (8) are sub-optimal. With two additional assumptions, we are able to

determine precisely in which way (8) are sub-optimal. In particular, we make the following

assumption to simplify the exposition that follows:

Assumption 2. Demand for the externality-producing, dirty goods is independent of the

price of the clean alternative in the other technology, i.e.,

∂x2

∂py1
=

∂y2
∂px1

= 0

That dirty transportation is neither a gross complement nor a substitute for clean elec-

tricity implies that the only impact of the clean technology in, say, electricity on the quantity
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Figure 2. Simulated Portfolios of Constrained Policies

(a) Optimal versus Naive Constrained Policy (b) Optimal Constrained Policies

Assumed Parameter Values

Figure 2a Figure 2b

Marginal externalities ex, ey 0.1 0.1
Number of households N 1.0 1.0

Own-price derivatives ∂x1

∂px
1
, ∂x2

∂px
2
, ∂y1

∂py
1
, ∂y2

∂py
2

−2.0 −2.0

Clean-dirty cross-price derivatives ∂x1

∂px
2
, ∂y1

∂py
2

1.0 1.0
∂y2

∂py
1

Varies 1.0
∂x2

∂px
1

1.0 Varies

Clean-clean cross-price derivatives ∂x1

∂py
1
, ∂y1

∂px
1

Varies Varies

Notes: Figure 2a compares the naive and optimal constrained subsidy policies on clean electricity (x1)
given by (8) and (9), respectively, for different values of the diversion ratios defined in (10). In particular,
this figure alters the degree of indirect substitution between clean electricity and dirty transportation (y2)
holding fixed all other components of the substitution matrix, Ω, i.e., the diversion ratio: Dx1,y2(p

y
1) =

− ∂y2

∂py
1

/
∂x1

∂py
1
. The horizontal axis normalizes different values of Dx1,y2(p

y
1) by Dx1,x2(p

x
1), the latter of

which is held fixed. Figure 2b shows the optimal constrained policies given by (9) for different values of
the diversion ratios defined in (12). In particular, this figure alters the degree of substitution—both direct
and indirect—between the clean technologies (x1 and y1) and dirty electricity (x2) holding fixed all other

components of the substitution matrix, Ω, i.e., the diversion ratio: DC,x2
(px1) = −∂x2

∂px
1

/(
∂x1

∂px
1
+ ∂y1

∂px
1

)
.

The horizontal axis normalizes different values of DC,x2
(px1) by DC,y2

(py1).

of dirty transportation consumed operates through the substitutability or complementarity

of clean electricity and clean transportation. While this assumption is perhaps restrictive in

practice, it likely provides a reasonable approximation to first-order. We make one additional
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assumption before comparing (8) and (9):

Assumption 3. The two clean technologies are complements, i.e.,

∂x1

∂px1
<

∂x1

∂py1
< 0

∂y1
∂py1

<
∂y1
∂px1

< 0

where the assumed concavity of preferences implies that own-price demand responses are

greater than the cross-price demand responses for the clean technologies.

We now turn to a comparison of the two policy regimes, (8) and (9). We start with

comparing the policies for clean electricity, τ̃x1 and τ̄x1 . Combining Assumptions 1, 2, and 3

gives the following result: accounting for complementarities between clean technologies will

result in a lower (i.e., less negative) subsidy rate for clean electricity when:

exDx1,x2(p
x
1) < eyDx1,y2(p

y
1) (10)

where Dx1,x2(p
x
1) = −∂x2

∂px1

/
∂x1

∂px1
is a diversion ratio that measures the fraction of individuals

shifting from x1 to x2 as px1 changes and Dx1,y2(p
y
1) = − ∂y2

∂py1

/
∂x1

∂py1
is a diversion ratio that

measures the fraction of individuals that both shift from x1 and into y2 as py1 changes. See

Appendix A.1 for the derivation of (10).

An analogous condition holds for clean transportation. Accounting for complementarities

between clean technologies will result in a lower (i.e., less negative) subsidy rate for clean

transportation when:

eyDy1,y2(p
y
1) < exDy1,x2(p

x
1) (11)

where Dy1,y2(p
y
1) = − ∂y2

∂py1

/
∂y1
∂py1

is a diversion ratio that measures the fraction of individuals

shifting from y1 to y2 as py1 changes and Dy1,x2(p
x
1) = −∂x2

∂px1

/
∂y1
∂px1

is a diversion ratio that

measures the fraction of individuals that both shift from y1 and into x2 as py1 changes. See

Appendix A.1 for the derivation of (11).

The results given by (10) and (11) imply that accounting for complementarities will result

in a lower subsidy rate for a given clean good relative to the naive constrained policy when

the direct marginal damages from a change in the price of that clean good are less than the

indirect marginal damages from a change in the price of the other clean good due to the

complementarity. That is, if fewer people switch from the clean to the dirty good in one

technology category due to a change in the price of the clean good than those that switch

from the clean good in one technology and into the dirty good in the other technology due
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to a change in the price of the other clean good, then the optimal constrained policy results

in a lower subsidy rate relative to the naive constrained policy.

Put differently, the comparative statics of (10) and (11) indicate that the the optimal

constrained policy in a given technology will only be larger than the naive policy that ignores

cross-technology complementarities when there is particularly strong substitution between

the clean and dirty good in that technology. Focusing on the case of clean electricity subsidies,

since
∣∣∣∂x1

∂px1

∣∣∣ >
∣∣∣∂x1

∂py1

∣∣∣, we know that (10) holds for any ∂y2
∂py1

≥ ∂x2

∂px1
. Indeed, the degree of

substitution between clean and dirty electricity would have to be meaningfully larger than

that between clean and dirty transportation—holding fixed the marginal externalities—for

(10) not to hold and for the optimal constrained policy in clean electricity to be larger than

the naive policy. This is evident in the simulated policy regimes in Figure 2a.

More broadly, the results (10) and (11) indicate that the precise way in which (8) are

sub-optimal depends on the full substitution matrix and the implications of the technology

complementarity for both environmental externalities.

2.6 Optimal Constrained Policies Emphasize Technology with Largest Demand

Response

Combining assumptions 1, 2, and 3, we directly compare the optimal constrained policies

for the two clean technologies given by (9). In particular, the optimal constrained policy

will be a larger (i.e., more negative) subsidy rate on clean transportation relative to clean

electricity, τ̄x1 > τ̄ y1 if the following condition holds:

exDC,x2(p
x
1) < eyDC,y2(p

y
1) (12)

where DC,x2(p
x
1) = −∂x2

∂px1

/(
∂x1

∂px1
+ ∂y1

∂px1

)
is a diversion ratio that measures the fraction of indi-

viduals shifting from clean technologies—either x1, y1, or both—and into x2 as px1 changes.

Similarly DC,y2(p
y
1) = − ∂y2

∂py1

/(
∂x1

∂py1
+ ∂y1

∂py1

)
is a diversion ratio that measures the fraction of in-

dividuals shifting from clean technologies—either x1, y1, or both—and into y2 as p
y
1 changes.

It follows that if (12) does not hold, then τ̄x1 < τ̄ y1 . See Appendix A.2 for the derivation of

(12).

Thus, when the policymaker takes interactions into consideration, they will place a larger

subsidy on the clean technology with the larger behavioral response, inclusive of both the

resulting direct substitution away from that clean technology’s dirty substitute and the

indirect impact on the other technology class due to the complementarity between the two

clean technologies. In other words, it is optimal for the policymaker to place a greater

emphasis on the technology with the greatest marginal benefit, i.e., the technology that
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induces a greater behavioral response of households switching from both clean technologies

and into the dirty technology for a change in price of that dirty technology’s clean substitute.

Importantly, the relative sizes of the optimal constrained policies depends on the behavioral

response from a price change in one clean technology in demand for both clean technologies.

This is shown for simulated optimal constrained policy portfolios in Figure 2b.

3 Estimates of Substitution between Clean Technologies

The model in Section 2 highlights the importance of considering the full substitution matrix

when setting the second-best policy portfolio in the context of interacting technologies. In

this section, we develop and estimate a simple static discrete choice model of households’

co-adoption decisions for solar PV and electric vehicles to determine the empirical substitu-

tion patterns between these two technologies and, as a result, the likely welfare losses from

ignoring these interactions.

3.1 Data on Co-adoption Decisions

Most administrative datasets on clean technology adoption decisions do not include informa-

tion on co-adoption of different technology types. While it is possible to combine structural

assumptions and publicly-available data on unconditional adoption of different technologies

to infer substitution patterns across technology types, we leverage a unique dataset that in-

cludes information on household-level demand for both solar photovoltaics (PVs) and plug-in

electric vehicles (PEVs). In particular, we use data on respondents’ solar adoption along

with vehicle discrete choice experiments contained in the 2013 and 2017 waves of the Califor-

nia Energy Commission’s (CEC) California Vehicle Survey to recover reasonable estimates

of empirical substitution patterns between solar PV and PEVs.

The CEC runs the California Vehicle Survey periodically to understand changes in light-

duty vehicle (LDV) choices within the state. Though early iterations of the survey existed

almost three decades ago, the CEC completed previous waves of the survey in its current

form in 2013, 2017, and 2019, each of which included revealed and stated preference surveys

for both the residential and commercial LDV sectors in California. Respondent households

were recruited for each wave of the survey using a combination of address-based sampling

and online address-based sampling through a market research panel. Samples were stratified

across major regions of the state.2 The surveys solicited detailed household demographic

data, including household income and information on whether a respondent household has

2For example, in the 2017 iteration of the survey, samples were stratified by the following six regions:
San Francisco, Sacramento, Central Valley, Los Angeles, San Diego, and the rest of the state.
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installed residential solar. The revealed preference component of the survey elicited respon-

dents’ preferences for different vehicles and vehicle attributes by asking a series of questions

about their current vehicle and their next vehicle decision.

Each wave of the California Vehicle Survey also included a stated preference experiment

in which respondents were presented with a series of eight choice occasions, each of which

involved choosing a preferred option between four different vehicles with randomly varying

attributes. This discrete choice experiment included a rich set of observable attributes which

varied randomly across each vehicle, including price; available rebates or other non-pecuniary

incentives; fuel type (e.g., plug-in hybrid electric vehicle or gasoline internal combustion

engine); vehicle type (e.g., compact car, SUV, or pickup truck); and other physical and

performance attributes for each alternative. While the 2013 and 2017 waves of the California

Vehicle Survey asked respondents to make contemporaneous selections in the experiment,

the 2019 wave asked respondents to evaluate the hypothetical alternatives as if they were

selecting their next vehicle in 3-5 years.

We combine the discrete choice experiments from the 2013 and 2017 California Vehicle

Survey waves with information on respondent demographics and solar adoption to under-

stand the relationship between household preferences for different vehicles and solar PV.

Since the 2019 wave introduces a choice experiment about a hypothetical future vehicle pur-

chase, we view this as inconsistent with the design of the 2013 and 2017 waves and therefore

omit the 2019 data from our empirical analysis. While the stated preference data for vehicle

demand provide empirically-plausible, random variation in prices and vehicle attributes, the

California Vehicle Survey data contains little information on respondents’ solar PV systems.

As a result, we combine these survey data with additional data on county-level average prices,

consumer rebates, and product attributes for residential solar PV systems from the Lawrence

Berkeley National Laboratory’s Tracking the Sun Database. We do so using respondents’

reported county of residence and assuming that households adopt solar in the year prior to

the California Vehicle Survey’s implementation, a flawed but necessary assumption given

the lack of information on the timing of solar adoption in the survey data. We bring in

additional data from the World Bank Group’s Global Solar Atlas to capture cross-sectional

variation in production potential for residential solar across California.

While there are a number of limitations to relying on these stated preference data, in-

cluding the fact that choices were not incentivized and respondents were unable to opt

out of selecting a vehicle alternative, we view them as reasonable approximations to con-

sumer demand in this context. In particular, the statewide sampling approach, the ability

to observe multiple choices per respondent, and the rich variation in vehicle attributes and

pricing—which avoids standard identification challenges with revealed preference data in this
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context—combined with the availability of information about solar PV adoption make these

data uniquely suited to recover empirical estimates of consumers’ preferences for bundles of

these technologies. The final discrete choice dataset includes 8 experimental vehicle choices

from 6,754 unique respondents, approximately 12.5% of whom have installed solar PV.

3.2 Demand for Bundles of Technologies

We adopt the framework of Gentzkow (2007), which allows for potential complementarity

between goods in a standard discrete choice model of demand by modeling household demand

for bundles of different products. In particular, we index households by i ∈ {1, ..., N}, goods
by j = {1, ..., J}, and the possible bundles of goods by b ∈ {1, ..., 2J}. Household i’s indirect

utility from consuming bundle b at time t is therefore:

uibt =
∑
j∈b

ūijt + Γb + εibt (13)

where ūijt is the contribution of product j ∈ b to household indirect utility from consuming

bundle b; Γb is the difference between the base utility of bundle b and the sum of the individual

contributions of constituent products, j; and εibt is an idiosyncratic shock to preferences for

each bundle.

The bundle-specific term, Γb, by construction captures the utility from the interaction

between the constituent products that define each bundle. We assume that this interaction

term is zero for singleton bundles, i.e.,

Γb =

0 if |b| = 1

Γb otherwise
(14)

Note that the construction of (14) makes no assumption on the sign of the interaction term

Γb for non-singleton bundles. This term, which measures the extent to which the utility

of consuming a good j ∈ b changes when consumed with b \ {j}, can be positive, zero-

valued, or negative. Intuitively, Γb < 0 implies that individuals experience disutility from

interaction of products within a bundle. Similarly, Γb > 0 implies a positive preference for

the interaction of products within a bundle. Gentzkow (2007) validates this logic by proving

the value of Γb is a sufficient statistic for substitution patterns between goods in b: Γb < 0

implies substitutability, Γb > 0 implies complementarity, and Γb = 0 implies independence.

Determining the sign of the interaction term Γb is therefore a key objective of this empirical

exercise.
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We parameterize each product’s contribution to indirect utility as

ūijt = αi(pjt − rjt) + θ′Xijt + ξj (15)

where pjt is the price of product j at time t; rjt is the rebate received on product j at time

t; Xijt is a vector of observable attributes that (possibly) varies over respondents, products,

and time; and ξj is a measure of product j’s time-invariant, unobservable quality.

We assume that the idiosyncratic preference shock, εibt, is an independently and iden-

tically distributed random variable that follows a type-I extreme value distribution, which

allows for closed-form, model-implied choice probabilities across technology bundles which

we can take to the data in estimation. We parameterize heterogeneity in respondents’ price

sensitivity as follows: αi = α/yi, where yi is observed consumer income. The probability

that individual i consumes bundle b on choice occasion t is therefore given by:

pibt(α, θ,Γb) = Pr(b ∈ argmax
c∈C

uict) =
exp(uibt(α, θ,Γb))∑
c∈C exp(uict(α, θ,Γb))

(16)

where C = {1, ..., 2J} is the choice set of possible bundles. Estimation then proceeds via

maximum likelihood, with the log likelihood defined as

L(α, θ,Γb) =
∑
i

∑
b

∑
t

yibt log(pibt(α, θ,Γb))

where yibt is an indicator that equals 1 if individual i selects bundle b on choice occasion t

and zero otherwise.

3.3 Estimation and Identification

Taking the discrete choice model defined by (13), (14), and (15) to the California Vehicle

Survey data requires defining the choice set. Respondents select one of eight alternatives,

which vary across the eight choice occasions that we observe for each respondent: the four

vehicle alternatives from the stated preference experiment, each of which can be consumed

with and without solar PV. Given this definition of the choice set, we define a single Γb

term, which is possibly non-zero for alternative bundles containing solar PV and a PEV

and is constrained to zero for all other singleton and non-singleton bundles. Since the four

vehicle alternatives vary across all choice occasions, it is important to note that there are no

repeat choice sets either within or across individuals. As a result, we are unable to estimate

alternative-specific constants—the time-invariant measure of unobservable quality, ξj, in (15)

above. This might be a concern for identification of the remaining model parameters if, for
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Table 1. Demand Estimates

Estimate (SE) Estimate (SE)

Common Parameters Vehicle Attributes
(Price – Subsidy) / Income −1.904 (0.033) Acceleration Rate −0.060 (0.002)
Complementarity Term (Γ) 0.771 (0.030) Fueling Time −0.139 (0.004)

Fuel Cost/Mile −0.047 (0.015)
Solar PV Attributes Miles/Gallon 0.391 (0.018)
1{Solar PV} −6.374 (0.404) Range 0.533 (0.012)
Solar Radiation 0.058 (0.018) Trunk Space 0.198 (0.013)
Module Efficiency 0.205 (0.012) Vehicle Age −0.037 (0.004)

1{Small Car} −0.157 (0.015)
Income Interactions 1{SUV} −0.039 (0.022)
Income × 1{PEV} 0.028 (0.002) 1{Truck} −0.692 (0.024)
Income × 1{Solar PV} 0.015 (0.002) 1{Van} −1.280 (0.036)

1{PEV} −0.213 (0.032)
1{Hybrid} 0.130 (0.014)

Log Likelihood −85 665.49
Individuals 6754
Choices 54 032

Notes: This table reports parameter estimates from the discrete choice model of demand
for bundles of technologies estimated using microdata from the 2013 and 2017 waves of the
California Vehicle Survey. Prices, income, and other monetary terms are converted to 2017
USD and are normalized by $10,000 for parameter readability. Parameters are estimated via
maximum likelihood estimation. Asymptotic standard errors are reported in parentheses.

example, we think the unobservable ξj is correlated with prices as is common in revealed

preference demand data.

Fortunately, the nature of the choice experiment and empirical solar PV data aids in

identification of the remaining target model parameters,
[
α θ′ Γb

]
. In particular, the

price coefficient, α, is identified from the random variation in prices and rebates in the

vehicle discrete choice experiment as well as the plausibly exogenous variation in available

rebates for solar PV adoption across California counties. Solar adoption rebates vary both

over space and time in California and is analogous to a shift in solar firms’ supply curve

holding demand fixed assuming the standard statutory-incidence irrelevance result. This

variation is used elsewhere in the literature estimating solar installation demand Gillingham

and Tsvetanov (2019); Pless and van Benthem (2019). Identification of the parameters

θ follows again from the random variation in observable vehicle attributes in the choice

experiment.

Identification of the interaction term, Γb, is non-trivial, but is possible with reasonable

exclusion restrictions. In particular, with the inclusion of observable product attributes,[
pjt rjt X ′

ijt

]
, which only shift the utility of adoption for one good j ∈ b implicitly functions

as an exclusion restriction which aids in identification of the interaction term Γb. Since
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these product-specific attributes only enter ūijt in (13), we can separately identify Γb using

observed realizations of these product-specific attributes and choices for all bundles: for any

two realizations of a non-trivial attribute for a specific good j ∈ b, observed variation in

demand for goods k ∈ b \ {j} will pin down the value of consuming k and j together in

bundle b, i.e., Γb. Our data provides such variation along many dimensions. For example,

the amount of solar irradiance a respondent’s home county receives plausibly only affects

their utility of solar adoption, so any change in PEV adoption that we observe at different

realizations of solar irradiance can be attributed to interaction between consuming solar

PV and PEVs together. A similar argument holds for the random vehicle attributes in the

discrete choice experiment, such as a vehicle’s acceleration rate or trunk space.

3.4 Results

We present parameter estimates and standard errors for the empirical co-adoption model

in Table 1. In general, all parameter estimates are precisely estimated and have the ex-

pected sign. The price coefficient, α, is large, precisely estimated, and negative as expected.

Importantly, the interaction term, Γ, is positive and large-in-magnitude. This term, which

measures the utility that respondents experience from consuming solar PV and PEVs to-

gether, is a sufficient statistic for the substitution patterns between these technologies. In

this case, the positive value of Γ implies that solar PV and PEVs are complementary tech-

nologies.

The remaining parameters on solar PV and vehicle attributes all have the expected sign.

Interestingly, respondents appear to experience considerable disutility from consuming solar

beyond the expense of the technology, though this is in part offset by higher demand for

solar among high income households. Unsurprisingly, respondents’ demand for solar appears

higher in areas that receive greater solar irradiance, in-line with existing literature, and

when higher efficiency solar modules are marketed. On the vehicle attribute side, consumers

similarly appear to dislike PEVs, with a strong, positive correlation between PEV utility

and income. Consumers generally prefer more efficient, faster, and newer vehicle models.

While the positive value of Γ is sufficient to conclude that solar PV and PEVs are

complements, the magnitudes of specific price responses may be of independent interest,

particularly given that the comparative statics in Section 2 depend on these values. We

therefore calculate own- and cross-price elasticities from separate 10% increases in the prices

of all solar PVs and PEVs in our choice dataset. On average, a 10% increase in solar PV

prices across the board leads to a 5.2% decrease in solar PV consumption and a 0.3% decrease

in PEV consumption. A similar 10% increase in all PEV prices leads to a 4.3% decrease in

PEV consumption and a 0.5% decrease in solar PV consumption on average. Interestingly,
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Figure 3. Relative Change in Demand from a 10% Increase in Solar or PEV Prices

Notes: This figure plots the average relative change in solar photovoltaic (PV) and plug-in electric vehicle
(PEV) demand for a 10% change in solar PV and PEV prices as a function of reported household income.
Each panel increases the prices of a single clean technology by 10% across all choice occasions facing that
technology, holding all other prices fixed. The left panels plot the relative change in the probability a
household chooses a bundle containing solar when solar PV prices increase (upper left) and when PEV
prices increase (lower left). The right panels plot the relative change in the probability a household
chooses a bundle containing PEV when PEV prices increase (upper right) and when solar PV prices
increase (lower right). Note the differences in the vertical axis scales between the own-price elasticities
in the upper panels and the cross-price elasticities in the lower panels.

this masks substantial heterogeneity by respondent income as shown in Figure 3

3.5 Policy Counterfactuals

We explore the implications of the results reported in Table 1 by calculating changes in

social surplus from different subsidy levels and policy-setting regimes. Given the lack of

a supply model, we focus on changes in consumer surplus, environmental damages, and

government subsidy expenditures from a baseline scenario with no clean technology subsidies.

Consumer surplus calculations follow the standard closed-form logit inclusive value formula.

Moreover, we use existing estimates of the marginal environmental benefit of adoption solar

PV and PEVs as well as a series of assumptions to calculate (avoided) environmental damages

associated with different subsidy regimes. Additional information on this calculation is

available in Appendix B.
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Figure 4 reports results from two distinct subsidy-setting counterfactual exercises. In Fig-

ure 4a, we replicate the “naive” policy-setting regime that implicitly ignores cross-technology

complementarities: we hold the subsidy-level in one technology fixed and look at changes

in social surplus from different subsidy levels in the other technology, ignoring any surplus

gains from the fixed, non-zero subsidy. This exercise empirically validates the result from

Section 2.5: ignoring the complementarity results in setting a higher-than-optimal subsidy,

unless the subsidy in the other technology is sufficiently high.

Figure 4b empirically validates the result from Section 2.6: the optimal second-best

subsidy portfolio places a greater emphasis on the technology with the largest behavioral

response, which as shown in Figure 3 is solar PV in the context of the California Vehicle

Survey. Moreover, we compare the model-implied optimal subsidy portfolio with the observed

ranges of available upfront subsidies for each technology in California during the two waves

of the California Vehicle Survey that we use in our empirical exercise.3 Taking the midpoints

of both ranges of observed solar PV and PEV subsidies, we find a loss of approximately 20%

the maximum available social surplus, suggesting large potential welfare gains from setting

subsidy policies in conjunction with one another in practice.

It is important to note that these counterfactual simulations are only illustrative: there

are several welfare-relevant margins for which we do not account (for example, producer

surplus) and there are important limitations to relying on these survey data as we discuss

above. Moreover, our calculation of the ranges of different subsidy levels observed in practice

rely on a series of assumptions and ignore important subsidy categories such as net energy

metering on the solar side. Nonetheless, we view these counterfactual results as demonstrat-

ing a key point: that the theoretical results of Section 2 likely have empirical relevance in

practice.

4 Discussion and Conclusion

We explore the implications of interactions between different technologies for the design of

policies aimed at increasing demand for these goods. We focus on potential interactions be-

tween policies targeting residential adoption of solar PV and PEVs, two clean technologies

which have several conceptual channels for complementary demand. We develop a theory

of optimal constrained policies when first-best Pigouvian taxation of negative externality-

3In particular, for solar PV we assume a system size of 5 kW and use maximum available state-level
rebates available through the California Solar Initiative, prices in the main estimation data, and the 30%
federal Investment Tax Credit to calculate minimum and maximum available solar subsidies per system for
2013 and 2017. Note that this does not include and flow benefits from net energy metering policies. For
PEVs, we report the maximum and minimum available rebates from the California Clean Vehicle Rebate
Program (CVRP) for battery electric and plug-in hybrid vehicles for 2013 and 2017.

21



Figure 4. Changes in Social Surplus Relative to No Subsidy Baseline

(a) Subsidies Set Independently (b) Subsidies Set Together

Notes: This figure plots the change in social surplus from different subsidy levels and policy-setting
regimes based on the model estimates reported in Table 1. Changes in social surplus are calculated as
the sum of changes in consumer surplus (∆C) and changes in environmental externalities due to clean
technology adoption (∆E), less the impact on government subsidy expenditures (∆G). We calculate
∆C following the standard McFadden inclusive value formula and ∆G assumes a marginal cost of public
funds of 1.0. See Appendix B for more details on our calculation of ∆E. Changes in social surplus are
relative to a no subsidy baseline. Figure 4a reports changes in social surplus from adjusting a single
subsidy. Figure 4a represents the naive subsidy-setting regime by ignoring any surplus changes relative
to the baseline of no subsidies that come from the other technology. Figure 4b shows the change in
social surplus relative to a baseline of no subsidies for different combinations of solar and PEV subsidies.
The “Observed Ranges” correspond to the maximum available upfront subsidies for each technology in
California during 2013 and 2017 (see text for further discussion).

producing substitutes for these two technologies are infeasible. We demonstrate that the

optimal second-best policy regime is a set of clean technology subsidies which depend on

cross-technology substitution patterns. Ignoring these interactions can lead policymakers to

set subsidies inefficiently high and to forgo potential welfare gains from optimally allocat-

ing subsidies towards the more influential market. We demonstrate the relevance of these

theoretical findings by developing and estimating a model of PV and PEV co-adoption in

California, finding evidence of a strong complementarity. These findings suggest that poli-

cymakers should consider potential spillover effects in related markets when creating policies

to increase the adoption of clean goods.
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A Stylized Model Derivations

A.1 Comparing Naive and Optimal Constrained Subsidies

Combining Assumptions 1, 2, and 3, we can show the condition under which accounting for

interactions results in a lower (i.e., less negative) subsidy rate on electricity:
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which is the condition given by (10). We can show that an analogous condition holds for

household transportation. Combining Assumptions 1, 2, and 3, we can show the condition

under which accounting for interactions results in a higher (i.e., more negative) subsidy rate
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on transportation:

τ̃ y1 < τ̄ y1

eyN

(
∂y2
∂py1

)(
∂y1
∂py1

)−1

<
exN

|Ω̃|

(
− ∂x2

∂px1

∂x1

∂py1

)
+

eyN

|Ω̃|

(
∂y2
∂py1

∂x1

∂px1

)
(by (8), (9), Assumption 2)(

∂y1
∂py1

)−1

<
1

|Ω̃|

(
∂x1

∂px1

)
+

ex

ey|Ω̃|

(
∂y2
∂py1

)−1(
− ∂x2

∂px1

∂x1

∂py1

)
(by Assumption 1)

1 >
1

|Ω̃|

(
∂x1

∂px1

∂y1
∂py1

)
− ex

ey|Ω̃|

(
∂y1
∂py1

∂x2

∂px1

∂x1

∂py1

)(
∂y2
∂py1

)−1

(by concavity of pref.)

∂x1

∂px1

∂y1
∂py1

− ∂y1
∂px1

∂x1

∂py1
<

∂x1

∂px1

∂y1
∂py1

− ex
ey

(
∂y1
∂py1

∂x2

∂px1

∂x1

∂py1

)(
∂y2
∂py1

)−1

(by definition of |Ω̃|)

−∂y1
∂px1

∂x1

∂py1
> −ex

ey

(
∂y1
∂py1

∂x2

∂px1

∂x1

∂py1

)(
∂y2
∂py1

)−1

∂y1
∂px1

>
ex
ey

(
∂y1
∂py1

∂x2

∂px1

)(
∂y2
∂py1

)−1

(by Assumption 3)

∂y1
∂px1

(
∂y1
∂py1

)−1

<
ex
ey

(
∂x2

∂px1

)(
∂y2
∂py1

)−1

(by concavity of pref.)

ey

(
∂y2
∂py1

)(
∂y1
∂py1

)−1

> ex

(
∂x2

∂px1

)(
∂y1
∂px1

)−1

(by Assumptions 1, 3)

ey

(
− ∂y2

∂py1

)(
∂y1
∂py1

)−1

︸ ︷︷ ︸
≡Dy1,y2 (p

y
1)

< ex

(
− ∂x2

∂px1

)(
∂y1
∂px1

)−1

︸ ︷︷ ︸
≡Dy1,x2 (p

x
1 )

which is the condition given by (11).

A.2 Comparing Optimal Constrained Subsidies across Technologies

Combining assumptions 1, 2, and 3, we can show the condition under which the optimal

subsidy on one clean technology exceeds the other under the first-best policy constraint.

For example, the optimal constrained policy portfolio will be a larger (i.e., more negative)
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subsidy rate on clean transportation relative to clean electricity if:
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B Estimating Changes in Environmental Damages from Clean

Technology Adoption

Counterfactual subsidy policy portfolios generate predicted levels in clean technology adop-

tion. We normalize these predicted levels of clean technology adoption relative to adoption

levels at a no-subsidy baseline. Given that a key policy justification for incentivizing the

adoption of solar PV and PEVs is to replace consumption of legacy, dirty electricity sources,

we use the quantities of solar PV and PEV adoption for each counterfactual policy portfolio

to conduct a back-of-the-envelope calculation of any changes in environmental damages rel-

ative to the no-subsidy baseline. This requires estimates of the change in climate and other

environmental damages from a marginal change in adoption for each technology.

B.1 Environmental Benefits of Solar Adoption

The external social benefits of solar PV subsidies are a function of the quantity of solar

PV adopted due to subsidies, the amount of electricity produced by these systems, and the

external damages associated with alternative electricity generation sources displaced by this

additional solar capacity. I use estimates of the marginal environmental benefits of additional

solar capacity in the US from Sexton et al. (2021). These estimates account for both the

marginal external damages from harmful local air pollutants as well as carbon dioxide. Using

rich data on electricity generation, solar insolation, and air pollution transport, Sexton

et al. (2021) produce spatially-differentiated estimates of the marginal environmental benefits

of additional solar capacity that account for substantial heterogeneity in solar generation,

displaced pollution emissions, and marginal costs of electricity over space and time. These off-

the-shelf estimates therefore allow me to account for variation across the state of California in

not only the lifetime generation potential of additional solar capacity, but also characteristics

of the electricity grid.

B.2 Environmental Benefits of PEV Adoption

We focus on capturing the environmental benefits of PEVs relative to gasoline vehicles, as-

suming that each PEV adopted offsets an internal combustion engine vehicle. Environmental

benefits come through reductions in both CO2 emissions and harmful local air pollutants. We

monetize these benefits using the social cost of carbon and estimates of the health benefits

of reduced exposure to harmful local air pollutants.

First we consider the carbon reduction benefits. A typical gasoline vehicle in the US

emits 4.6 tons of CO2 annually based on an assumption of average vehicle miles traveled
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of 11,5002 We further assume an emissions reduction factor of 70%, a vehicle lifetime of 12

years, and a social cost of carbon of $185 per ton of CO2 (Rennert et al., 2022). With these

assumptions, we estimate that replacing an ICE vehicle with a PEV leads to a CO2 reduction

of 3.2 tons/year, which we estimate provides a present discounted benefit of approximately

$7,100.
The local air pollution benefits from PEV adoption are due to a decline in PM2.5, NOx,

and VOC emissions. Estimates of the health costs of different pollutants from the US EPA

and Holland et al. (2016) place the total health benefit of replacing a gasoline vehicle with

a PEV at approximately $12,000.
Note that these calculations assume that PEVs replace average gasoline vehicles; however,

Xing et al. (2021) find that PEVs tend to replace more fuel efficient ICEs. Based on the

findings of Xing et al. (2021), we scale back the sum of the climate and local health benefits

of PEV adoption by up to half in the results that we report in the main text (Figure 4

2Estimate retrieved from US Department of Energy, Alternative Fuels Data Center: https://afdc.

energy.gov/data (last retrieved, 4/21/2025).
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C Supplemental Figures and Tables

Figure C1. US State-level Solar PV and Zero Emissions Vehicle (ZEV) Incentives

(a) Cumulative solar PV subsidies and ZEV programs enacted
by state, 2000-2020.

(b) Total solar PV subsidies and ZEV programs enacted by
year, 2000-2020.

Notes: This figure shows the evolution of state-level solar PV and zero emissions vehicle (ZEV) incentive
programs from 2000 to 2020. Panel (a) shows variation in these incentive programs across different
states over time, demonstrating a strong positive relationship between the extent to which these two
technologies are subsidized over space. Panel (b) shows variation in these incentive programs by year,
showing the total dollar value of solar PV incentives and the number of ZEV incentive programs enacted
by US states by year. Note that ZEV include plug-in electric vehicles (PEVs)—battery electric vehicles
and plug-in hybrid electric vehicles—as well as other zero- or low-emissions vehicles such as hydrogen
fuel cell vehicles. The vast majority of ZEVs are PEVs. Data come from Lawrence Berkeley National
Laboratory and the US Department of Energy.
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