Private Benefits from Public Investment in Climate Adaptation and Resilience

Jacob T. Bradt jbradt@g.harvard.edu Harvard Kennedy School

Joseph E. Aldy joseph_aldy@hks.harvard.edu Harvard Kennedy School

American Economic Association 2023 Annual Meeting January 8, 2023

Climate change and flood risk in the US

Estimated Change in Properties with Flooding (2021-2051)

- Flood events most costly disasters in US

 2017: ~\$300B in damages (NOAA)
- Share of US properties at risk of regular flooding ↑ 8.2% over next 30 years (FSF)

Source: First Street Foundation and Authors' calculations

Managing flood risk in the US

- Infrastructure Investment and Jobs Act: \$50+ billion for climate adaptation

Summary

- With growing natural hazard risks, policymakers face increasing imperative to invest in public adaptation
 - $\rightarrow\,$ Research question: Who benefits and by how much?
- We use novel data on areas protected by US Army Corps of Engineers (USACE) levees to estimate the housing market impacts of this large, public adaptation investment
- Findings:
 - 1. Estimate subsidized flood protection benefits amount to 2% of a home's value
 - 2. Spillover effects to surrounding, unprotected properties in the form of increased flood risk can reduce home value by as much as 1.1%
 - 3. Flood protection benefits are progressive, but spillovers are regressive
 - 4. Ex post, USACE-constructed levee costs appear to exceed benefits

Related literature

- Individual-level adaptation and adaptation policy
 - Auffhammer, 2022; Barreca et al., 2016; Baylis and Boomhower, 2021; Burke and Emerick, 2016; Kahn, 2016; Wagner, 2021
- Capitalization of flood risk and adaptive investments
 - Beltrán et al., 2019; Bernstein et al., 2019; Bin et al., 2008; Bin and Landry, 2013; Dundas, 2017; Dundas and Lewis, 2020; Fell and Kousky, 2015; Gopalakrishnan et al., 2018; Graff Zivin et al., 2022; Hallstrom and Smith, 2005; Kelly and Molina, 2022; Murfin and Spiegel, 2020; Ortega and Taspinar, 2018; Walsh et al., 2019; Wang, 2021
- Public finance implications of climate change and impacts of place-based policies
 - Barrage, 2020; Busso et al., 2013; Fried, 2021; Goldsmith-Pinkham et al., 2021; Greenstone et al., 2010; Liao and Kousky, 2022; Mast, 2020

Outline

Institutional Background

Data and Empirical Design

Capitalization and Incidence Results

Mechanisms, Benefits/Costs, and Political Economy Considerations

Conclusion

What is a levee?

- Man-made structure that diverts water flow during flood stages
- Provides flood protection to defined area, up to a certain flood severity
- Imposes flood risk spillovers to downstream/upstream areas (Heine and Pinter, 2012; Remo et al., 2018)

Federal levee construction

- USACE primary federal entity responsible for flood control
- USACE project delivery
 - Project-level Congressional authorization & funding
 - Require local cost share (45% construction, 100% O&M)
- Recent shift from flood control to policies that manage consequences (e.g., NFIP)
- Why study levees?

Primary data

- Data on flood risk adaptation projects from First Street Foundation
 - Merge data from USACE National Levee Database
- Focus on USACE levees
 - 1. Construction date available
 - 2. Similar set of projects
- Combine project data with home sale data from Zillow (1990-present)

Additional data

- USACE National Levee Database \longrightarrow levee construction date
- Home Mortgage Disclosure Act (HMDA) → transaction-level demographic data for a subset of transactions
- US Geological Survey National Hydrography Dataset —> distance to nearest waterway
- NOAA Storm Events Database \longrightarrow annual county-level counts of flood-related storm events

• Summary stats.

Effects of levee construction

33.26°N+ 33.25°N -33.24°N -33.23°N 33.22°N 33.21°N 117.38°W 117.36°W 117.34°W 117.32°W 117.30°W 117.28°W San Luis Rey River 💻 San Luis Rey River 3 Levee Levee protected area

San Luis Rey River 3 Levee - Oceanside, CA

- Identification challenges:
 - Siting endogeneity
 - Heterogeneous effects
- Potential effects of levee construction:
 - 1. Protection effects (A)
 - 2. Spillover effects (B)
 - 3. Macro effects (A, B, C)
- ⇒ Compare pre-/post-levee construction changes in prices

Defining property exposure

- Treatment status of a transaction of parcel *i* at time *t* can be entirely defined using the following indicators:
 - $$\begin{split} \mathcal{T}_{it} &= \mathbb{1}\left\{\text{Sale occurs post levee construction}\right\}\\ \mathcal{L}_i &= \mathbb{1}\left\{\text{Parcel is within a leveed area}\right\} \end{split}$$
 - $W_i = \mathbb{1}\{ \mathsf{Parcel} \text{ is adjacent to a waterway} \}$
- Note that $L_i = 1 \Leftrightarrow W_i = 0$
- *T_{it}* and *L_i* easily defined from ZTRAX, USACE, and FSF data

Research design: Difference-in-Differences (DD)

- Use repeat sales data from properties inside leveed areas and within 5 mi of leveed area boundaries, excluding those within 0.1 mi around leveed area boundaries ("donut" design)
- Separately identify flood protection and flood risk spillover effects by specifying property i's transaction price at time t, P_{it} , as:

$$\log(P_{it}) = \alpha_1 (T_{it} \times L_i) + \alpha_2 (T_{it} \times W_{it}) + \xi_i + \mu_{I(i)t} + \delta_t + \varepsilon_{it}$$
spillover effects

- ξ_i , $\mu_{I(i)t}$, δ_t are parcel, year-by-levee, and month-of-sample FE

 μ_{l(i)t} fixed effect shuts down inadmissible comparisons (de Chaisemartin and D'Haultfœuille, 2020; Goodman-Bacon, 2021) → Staggered treatment timing

Main capitalization estimates

	$k \leq 0.1$ mi.		$k \leq 0$	0.2 mi.	$k \le 0.3$ mi.	
	(1)	(2)	(3)	(4)	(5)	(6)
Post $ imes$ Intersects ($lpha_1$)	0.098^{***} (0.015)	0.029***	0.095*** (0.015)	0.028***	0.092*** (0.015)	0.027***
Post $ imes$ k mi. of Water ($lpha_2$)	-0.062*** (0.012)	-0.013* (0.007)	-0.062*** (0.009)	-0.011** (0.005)	-0.064*** (0.008)	-0.008* (0.005)
Parcel FE Sale Year-Sale Month FE Sale Year-Levee Segment FE Observations R ²	Yes Yes 1,244,323 0.924	Yes Yes Yes 1,244,323 0.948	Yes Yes 1,244,323 0.924	Yes Yes Yes 1,244,323 0.948	Yes Yes 1,244,323 0.924	Yes Yes Yes 1,244,323 0.948

Clustered (Tract FE) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Flexible treatment def.
Additional effects

Dynamic effects of levee construction

Log(Sale Price)

Incidence of protection benefits and spillover costs

Average Household Effect (% of Income)

 Evidence of differential sorting ex-post by race/ethnicity
 Differential sorting

Mechanism: NFIP premium discounts

- Assume capitalized protection benefits entirely from PDV of reduced NFIP premiums
 - Full coverage for 30 yrs, 5% discount rate $\Rightarrow \Delta$ premium
- Implied Δ premium exceeds nationwide SFHA/non-SFHA premium diff on average
- While NFIP discount plays a role, other factors likely
 - SFHA take-up 48% nationwide
 - 25% of segments in sample are not FEMA-accredited

15

Mechanism: Learning from flood exposure

Log(Sale Price) Post-Levee Construction

- Households learn about flood risk (Bakkensen and Barrage, 2021; Gallagher, 2014)
- Post-levee construction event study using flood-related Presidential Disaster Declarations

Estimated benefit cost ratios

- Types of benefits/costs
 - 1. Capitalized effects
 - 2. Local public finance externalities
 - 3. Construction costs
- Collect construction cost data for 37 projects
- Normalize benefits and costs by levee size
 - Points proportional to levee size

External costs and local political economy

2019 USD/Levee Mile

- 30% of projects in sample impose spillovers on external counties
- Levee construction and Congressional representation
 - Committee membership

Summary

- We examine the case of USACE-constructed levees to better understand key economic questions around public adaptation investments
- Findings:
 - 1. Levee flood protection subsidies amount to 2.8% of a home's value
 - 2. Substantial flood risk spillovers: reduce home value by 1.1%
 - 3. Redistribution to lower income households partially offset by the regressivity of spillovers
 - 4. Ex post, USACE-constructed levee costs appear to exceed benefits
- USACE levees highlight the difficulties that policymakers face in using existing institutions for climate adaptation
 - \rightarrow Presence of spillover costs and accounting of aggregate benefits and costs illuminate local strategic incentives that determine policy outcomes
 - ightarrow Policymakers should carefully consider strategic incentives in the design of adaptation policy

Thank you

Please reach out with comments/questions jbradt@g.harvard.edu www.jacobbradt.com

Backup Slides

Flood risk adaptation project types

Top 10 adaptation types in nationwide FSF database

Total unique adaptation projects = 26,947

Transaction-level demographic data

- Match ZTRAX transaction-level data with demographic data from Home Mortgage Disclosure Act
- Match rates: 42% (unconditional); 68% (conditional)

Go back

- Match rates from literature: 54% (Bayer et al., 2016), 47% (Bakkensen and Ma, 2020)

Summary statistics

	Unmatch	ied Sample	e HMDA Sample			
	Mean	Std. Dev.	Mean	Std. Dev.	Diff. in Means	Std. Error
Price (1000s 2019 \$)	390.465	286.726	406.597	262.969	16.133	0.410
Bathrooms	2.077	0.770	2.104	0.722	0.027	0.001
Bedrooms	3.235	0.837	3.275	0.807	0.040	0.001
Interior Area (ft. ²)	1.781	0.739	1.793	0.714	0.012	0.001
Age (years)	40.022	28.494	34.803	25.508	-5.219	0.040
Levee Protected	0.121	0.326	0.132	0.339	0.012	0.000
Distance from Leveed Area (mi.)	-2.292	1.815	-2.213	1.821	0.079	0.003
Distance from Levee (mi.)	3.659	2.560	3.622	2.524	-0.037	0.004
Distance from Water (mi.)	0.631	0.480	0.643	0.484	0.012	0.001
Loan Amount (1000s 2019 \$)	_	_	247.260	160.701	_	_
Income (1000s 2019 \$)	—	—	128.298	732.087	_	—
Black	_	—	0.046	0.210	_	—
White	_	—	0.637	0.481	_	—
Hispanic	_	—	0.087	0.283	_	_
Asian	—	—	0.144	0.351	—	—
Ν	867	7,490	944	4,366		

Identification details

- Define $\Delta_t P = \text{pre-/post-levee}$ construction change in a property's price
- Given the definition of the 3 example parcels and our primary specification, note that

 $\begin{array}{ll} \Delta_t P_A = \textit{Macro} + \textit{Protect} & = \alpha_1 + \Delta_t \mu_{l(i)t} + \Delta_t \delta_t \\ \Delta_t P_B = \textit{Macro} + \textit{Spillover} & = \alpha_2 + \Delta_t \mu_{l(i)t} + \Delta_t \delta_t \\ \Delta_t P_C = \textit{Macro} & = \Delta_t \mu_{l(i)t} + \Delta_t \delta_t \end{array}$

- We can therefore identify the protection and spillover effects with the following double differences (DD):

 $(Protect)_{DD} = \Delta_t P_A - \Delta_t P_C = \alpha_1$ (Spillover)_{DD} = $\Delta_t P_B - \Delta_t P_C = \alpha_2$

Go back

Staggered treatment

Construction Timing across Cohorts

• Go back

Flexibly defined proximity-based treatment

	(1)	(2)
$Post \times Intersects$	0.113***	0.030***
	(0.016)	(0.009)
Post $ imes$ Distance to Water Bins	, ,	. ,
[0.0, 0.1 mi]	-0.072***	-0.017**
	(0.012)	(0.007)
(0.1, 0.2 mi]	-0.062* ^{**}	-0.010 [*]
	(0.009)	(0.005)
(0.2, 0.3 mi]	-0.060***	-0.003
	(0.008)	(0.005)
(0.3, 0.4 mi]	-0.054***	-0.003
	(0.008)	(0.005)
Parcel FE	Yes	Yes
Sale Year-Sale Month FE	Yes	Yes
Sale Year-Levee Segment FE		Yes
Observations	1,244,323	1,244,323
R ²	0.924	0.948

Clustered (Tract FE) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Broader set of effects of levee construction

San Luis Rey River 3 Levee - Oceanside, CA

Potential effects of levee construction:

- 1. Protection effects (A, B)
- 2. Adjacency effects (A, C)
- 3. Salience effects (A)
- 4. Spillover effects (C, D)
- 5. Macro effects (A, B, C, D, E)

Broader set of effects of levee construction

- Define Δ_tP = pre-/post-levee construction change in a property's price
- Then for each property:

 $\begin{array}{l} \Delta_t P_A = \textit{Macro} + \textit{Protect} + \textit{Adjacency} \\ + \textit{Salience} \\ \Delta_t P_B = \textit{Macro} + \textit{Protect} \\ \Delta_t P_C = \textit{Macro} + \textit{Adjacency} + \textit{Spillover} \\ \Delta_t P_D = \textit{Macro} + \textit{Spillover} \\ \Delta_t P_E = \textit{Macro} \end{array}$

⇒ Can use changes in prices across property types to identify effects

Expanded capitalization estimates

	$k \leq 0.1$ mi.		$k \leq 0$).2 mi.	$k \leq 0.3$ mi.	
	(1)	(2)	(3)	(4)	(5)	(6)
Post × Intersects (α_1)	0.098***	0.026***	0.097***	0.027***	0.095***	0.027***
	(0.015)	(0.008)	(0.015)	(0.009)	(0.015)	(0.009)
Post x k mi. of Levee (α_2)	-0.0005	-0.019	0.054*	0.014	0.070***	0.018
	(0.043)	(0.029)	(0.029)	(0.015)	(0.024)	(0.011)
Post $\times k$ mi. of Water (α_3)	-0.062***	-0.014**	-0.063* ^{**}	-0.012* ^{**}	-0.066* ^{**}	-0.009 [*]
	(0.012)	(0.007)	(0.009)	(0.005)	(0.008)	(0.005)
Post × Intersects × k mi. of Levee (α_4)	-0.068	-0.021	-0.101***	-0.043**	-0.110***	-0.037**
	(0.050)	(0.035)	(0.037)	(0.019)	(0.032)	(0.016)
Parcel FE	Yes	Yes	Yes	Yes	Yes	Yes
Sale Year-Sale Month FE	Yes	Yes	Yes	Yes	Yes	Yes
Sale Year-Levee Segment FE		Yes		Yes		Yes
Observations	1,279,984	1,279,984	1,279,984	1,279,984	1,279,984	1,279,984
R ²	0.924	0.948	0.924	0.948	0.924	0.948

Clustered (Tract FE) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Event study specification

- Separately estimate the following specifications on the relevant subset of treatment and control parcels

$$\log P_{it} = \sum_{\tau=-5}^{10} \alpha_1^{\tau} \left(L_i \times \mathbb{1} \left\{ t = (Levee Year_i + \tau) \right\} \right) + \xi_i + \mu_{l(i)t} + \delta_t + \varepsilon_{it}$$
$$\log P_{it} = \sum_{\tau=-5}^{10} \alpha_2^{\tau} \left(W_i \times \mathbb{1} \left\{ t = (Levee Year_i + \tau) \right\} \right) + \xi_i + \mu_{l(i)t} + \delta_t + \varepsilon_{it}$$

where

- LeveeYear; indicates the year parcel i's nearest levee segment is constructed
- $\mathbb{1}\{t = (LeveeYear_i + \tau)\}\$ is an indicator variable that equals 1 if a parcel's transaction year t occurs in event times τ relative to the levee construction year and zero otherwise
- Normalize treatment effects relative to au=-1

Sorting post-levee construction

	log(Income) (1)	White/Asian (2)	Black (3)	Hispanic (4)
$Post\timesIntersects$	0.001	0.043***	-0.006	-0.041**
	(0.013)	(0.012)	(0.004)	(0.020)
Post $ imes$ Distance to Water Bins				
[0.0, 0.1 mi]	-0.017	-0.043***	0.019***	-0.033**
	(0.011)	(0.010)	(0.005)	(0.015)
(0.1, 0.2 mi]	0.0006	-0.028* ^{**}	0.010*´	-0.010
	(0.009)	(0.008)	(0.005)	(0.012)
(0.2, 0.3 mi]	-0.009	-0.028***	0.014***	0.007
	(0.008)	(0.008)	(0.004)	(0.012)
(0.3, 0.4 mi]	-0.004	-0.013*	0.005	0.0003
	(0.008)	(0.007)	(0.003)	(0.012)
Parcel FE	Yes	Yes	Yes	Yes
Sale Year-Sale Month FE	Yes	Yes	Yes	Yes
Sale Year-Levee Segment FE	Yes	Yes	Yes	Yes
Dependent variable mean	138,319	0.787	0.043	0.174
Observations	646,825	646,837	646,837	387,507
R ²	0.817	0.668	0.690	0.816

Clustered (Tract FE) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Flood exposure specification

- Generate indicators of flood-related Presidential Disaster Declarations (PDDs) in annual bins
- Separately estimate the following specifications on the relevant subset of treatment and control parcels, restricting to transactions post levee construction

$$\log P_{it} = \sum_{\tau=-3}^{3} \alpha_1^{\tau} \left(L_i \times PDD_{c(i)t}^{\tau} \right) + \xi_i + \nu_{c(i)t} + \delta_t + \varepsilon_{it}$$
$$\log P_{it} = \sum_{\tau=-3}^{3} \alpha_2^{\tau} \left(W_i \times PDD_{c(i)t}^{\tau} \right) + \xi_i + \nu_{c(i)t} + \delta_t + \varepsilon_{it}$$

where

- PDD^τ_{c(i)t} is a binary variable that equals 1 if the transaction of parcel *i* occurs in a county *c* that experiences a federal disaster declaration *τ* years relative to sale year *t* and 0 otherwise
 ν_{c(i)t} is a county-by-year fixed effect
- Normalize treatment effects relative to au=-1

Pooled flood exposure results

	(1)	(2)	(3)
High Flood Exp.	-0.005*	9.69×10^{-5}	-0.001
	(0.003)	(0.003)	(0.003)
High Flood Exp. $ imes$ Intersects	0.043***		0.044***
	(0.006)		(0.006)
High Flood Exp. $ imes$ Near Water	. ,	-0.027***	-0.026***
		(0.004)	(0.004)
Parcel FE	Yes	Yes	Yes
Sale Year-Levee Project FE	Yes	Yes	Yes
Sale Year-Sale Month FE	Yes	Yes	Yes
Observations	745,302	745,067	858,428
R^2	0.959	0.958	0.958

- Restrict data to transactions that occur after levee construction

- Regress log of real sale price on interactions between relevant treatment indicators and an indicator of whether a transaction is "high flood exposed"
 - Define as a transaction of a parcel falling within a county with a greater than 75th percentile value of lagged 24-month count of flood-related storm events (NOAA)

Effects of levee construction on NFIP outcomes

	Р	Protection Effect			Spillover Effect			
	Take-up (1)	Pr(Claim) (2)	\$/Claim (3)	Take-up (4)	Pr(Claim) (5)	\$/Claim (6)		
$Post\timesIntersects$	-0.034*** (0.009)	-0.107*** (0.018)	-80.8 (950.6)					
$Post\timesNear\;Water$. ,	. ,	、 ,	0.007 (0.007)	0.033*** (0.010)	2,919.7** (1,205.4)		
Sale Year FE	Yes	Yes	Yes	Yes	Yes	Yes		
Tract FE	Yes	Yes	Yes	Yes	Yes	Yes		
Sale Year-Levee Project FE	Yes	Yes	Yes	Yes	Yes	Yes		
Observations	19,284	33,458	4,019	19,284	33,458	4,019		
R ²	0.935	0.378	0.769	0.934	0.377	0.770		

Clustered (Tract FE) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Regress aggregate NFIP outcomes, Y_{ct} , on a balanced panel at the census tract-by-year level:

$$Y_{ct} = \beta_1(T_{ct} \times L_c) + \xi_c + \mu_{I(c)t} + \delta_t + \epsilon_{ct} \qquad Y_{ct} = \beta_2(T_{ct} \times W_c) + \xi_c + \mu_{I(c)t} + \delta_t + \epsilon_{ct}$$

where ξ_c , $\mu_{I(c)t}$, and δ_t are tract, levee-by-year, and year fixed effects

Aggregate benefits and costs

	Mean	Std. Dev.	Min.	Max.	Ν
Protection Benefits (\$Mil./mi.)					
ZTRAX Housing Stock Estimate	1.066	2.136	0.007	10.930	37
USACE Housing Stock Estimate	9.608	14.027	0.000	71.202	37
Costs (\$ Mil./mi.)					
Construction Costs					
Total	60.781	157.651	0.189	852.161	37
Federal	49.007	130.027	0.003	664.098	29
Non-Federal	15.385	38.060	0.005	188.063	27
Spillover Effects	13.799	40.799	0.008	238.268	37
Fiscal Externalities					
Effective Tax Rate: Leveed Area	0.035	0.049	0.010	0.226	33
Effective Tax Rate: Spillover Area	0.032	0.044	0.006	0.208	34
Protection Benefits (\$Mil./mi.)					
ZTRAX Housing Stock Estimate					
2% real interest rate	0.943	1.694	0.000	6.951	37
3.5% real interest rate	0.539	0.968	0.000	3.972	37
USACE Housing Stock Estimate					
2% real interest rate	21.086	73.863	0.000	449.851	37
3.5% real interest rate	12.049	42.207	0.000	257.058	37
Spillover Effects (\$Mil./mi.)					
2% real interest rate	34.368	144.968	0.000	866.797	37
3.5% real interest rate	19.639	82.839	0.000	495.313	37

External costs and local political economy

Cumulative Levee Construction by State (1993-2018) Appropriations Committee Transportation & Infrastructure Committee 120 0 Δ 0 . 90 evee Miles 60 ۵^ 0 30 ^ Δ 0 0 0 0 Δ 40 30 Levee Segn 20 10 £_ 50 100 50 100 Cumulative Committee Years by State (1993-2018)

- House committee membership data from Grossman et al., 2022

- Positive correlation between USACE levee construction and local representation

▶ Go back

References I

- Auffhammer, M. (2022). Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption. Journal of Environmental Economics and Management, 114, 102669.
- Bakkensen, L. A., & Barrage, L. (2021). Going Underwater? Flood Risk Belief Heterogeneity and Coastal Home Price Dynamics. The Review of Financial Studies, hhab122.
- Barrage, L. (2020). The Fiscal Costs of Climate Change. AEA Papers and Proceedings, 110, 107-112.
- Barreca, A., Clay, K., Deschenes, O., Greenstone, M., & Shapiro, J. S. (2016). Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century. *Journal of Political Economy*, 124(1), 105–159.
- Baylis, P., & Boomhower, J. (2021). The Economic Incidence of Wildfire Suppression in the United States. American Economic Journal: Applied Economics, Forthcoming, 51.
- Beltrán, A., Maddison, D., & Elliott, R. (2019). The impact of flooding on property prices: A repeat-sales approach. Journal of Environmental Economics and Management, 95, 62–86.
- Bernstein, A., Gustafson, M. T., & Lewis, R. (2019). Disaster on the horizon: The price effect of sea level rise. Journal of Financial Economics, 134(2), 253-272.
- Bin, O., Kruse, J. B., & Landry, C. E. (2008). Flood Hazards, Insurance Rates, and Amenities: Evidence From the Coastal Housing Market [_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1539-6975.2007.00248.x]. Journal of Risk and Insurance, 75(1), 63–82.
- Bin, O., & Landry, C. E. (2013). Changes in implicit flood risk premiums: Empirical evidence from the housing market. Journal of Environmental Economics and Management, 65(3), 361-376.
- Burke, M., & Emerick, K. (2016). Adaptation to Climate Change: Evidence from US Agriculture. American Economic Journal: Economic Policy, 8(3), 106-140.
- Busso, M., Gregory, J., & Kline, P. (2013). Assessing the Incidence and Efficiency of a Prominent Place Based Policy. American Economic Review, 103(2), 897–947.
- de Chaisemartin, C., & D'Haultfœuille, X. (2020). Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects. American Economic Review, 110(9), 2964–2996.
- Dundas, S. J. (2017). Benefits and ancillary costs of natural infrastructure: Evidence from the New Jersey coast. Journal of Environmental Economics and Management, 85, 62–80.
- Dundas, S. J., & Lewis, D. J. (2020). Estimating Option Values and Spillover Damages for Coastal Protection: Evidence from Oregon's Planning Goal 18 [Publisher: The University of Chicago Press]. Journal of the Association of Environmental and Resource Economists, 7(3), 519–554.
- Fell, H., & Kousky, C. (2015). The value of levee protection to commercial properties. Ecological Economics, 119, 181-188.
- Fried, S. (2021). Seawalls and Stilts: A Quantitative Macro Study of Climate Adaptation. The Review of Economic Studies, (0), 42.
- Gallagher, J. (2014). Learning about an Infrequent Event: Evidence from Flood Insurance Take-Up in the United States. American Economic Journal: Applied Economics, 6(3), 206–233.

References II

Goldsmith-Pinkham, P., Gustafson, M. T., Schwert, M., & Lewis, R. C. (2021). Sea Level Rise Exposure and Municipal Bond Yields. Working Paper, 76. Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. Journal of Econometrics, 225(2), 254–277.

Gopalakrishnan, S., Landry, C. E., & Smith, M. D. (2018). Climate Change Adaptation in Coastal Environments: Modeling Challenges for Resource and Environmental Economists [Publisher: The University of Chicago Press]. Review of Environmental Economics and Policy, 12(1), 48–68.

Graff Zivin, J., Liao, Y., & Panassie, Y. (2022). How Hurricanes Sweep Up Housing Markets: Evidence from Florida. Working Paper, 60.

Greenstone, M., Hornbeck, R., & Moretti, E. (2010). Identifying Agglomeration Spillovers: Evidence from Winners and Losers of Large Plant Openings. Journal of Political Economy, 118(3), 536–598.

Grossman, M., Lucas, C., McCrain, J., & Ostrander, I. (2022). CongressData.

Hallstrom, D. G., & Smith, V. K. (2005). Market responses to hurricanes. Journal of Environmental Economics and Management, 50(3), 541-561.

Heine, R. A., & Pinter, N. (2012). Levee effects upon flood levels: An empirical assessment [_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/hyp.8261]. Hydrological Processes, 26(21), 3225–3240.

Kahn, M. E. (2016). The Climate Change Adaptation Literature. Review of Environmental Economics and Policy, 10(1), 166-178.

Kelly, D. L., & Molina, R. (2022). Adaptation Infrastructure and its Effects on Property Values in the Face of Climate Risk. Working Paper.

Liao, Y. (, & Kousky, C. (2022). The Fiscal Impacts of Wildfires on California Municipalities [Publisher: The University of Chicago Press]. Journal of the Association of Environmental and Resource Economists, 9(3), 455–493.

Mast, E. (2020). Race to the Bottom? Local Tax Break Competition and Business Location. American Economic Journal: Applied Economics, 12(1), 288-317.

Murfin, J., & Spiegel, M. (2020). Is the Risk of Sea Level Rise Capitalized in Residential Real Estate? The Review of Financial Studies, 33(3), 1217-1255.

Ortega, F., & Taspinar, S. (2018). Rising sea levels and sinking property values: Hurricane Sandy and New York's housing market. Journal of Urban Economics, 106, 81–100.

Remo, J. W. F., Ickes, B. S., Ryherd, J. K., Guida, R. J., & Therrell, M. D. (2018). Assessing the impacts of dams and levees on the hydrologic record of the Middle and Lower Mississippi River, USA. Geomorphology, 313, 88–100.

Wagner, K. R. H. (2021). Adaptation and Adverse Selection in Markets for Natural Disaster Insurance. American Economic Journal: Economic Policy, Forthcoming.

Walsh, P., Griffiths, C., Guignet, D., & Klemick, H. (2019). Adaptation, Sea Level Rise, and Property Prices in the Chesapeake Bay Watershed [Publisher: University of Wisconsin Press]. Land Economics, 95(1), 19–34.

Wang, H. (2021). Flood Your Neighbors: Spillover Effects of Levee Building. Working Paper, 55.