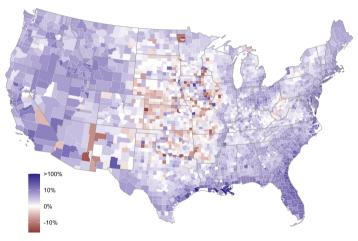
Private Benefits from Public Investment in Climate Adaptation and Resilience


Joseph E. Aldy joseph_aldy@hks.harvard.edu Harvard Kennedy School

Jacob Bradt jbradt@g.harvard.edu Harvard Kennedy School

AERE Summer Conference June 2, 2022

Flood risk in the US

Estimated Change in Properties with Flooding (2021-2051)

- Flood events most costly disasters in US
- 2017: \sim \$300B in damages (NOAA)
- Share of US properties at risk of regular flooding ↑ 8.2% over next 30 years (FSF)

Source: First Street Foundation and Authors' calculations

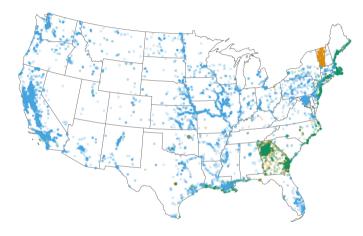
Flood risk in the US

- Infrastructure Investment and Jobs Act: \$50+ billion for climate adaptation
- Historically, major form of flood risk adaptation: levees

 Adaptation types

Summary of findings

- As climate risks increase, public adaptation policy will prompt questions about the magnitude and distribution of benefits
- We use novel data on areas protected by US Army Corps of Engineers (USACE) levees to estimate the magnitude and incidence of this geographically-differentiated subsidy
 - $\rightarrow\,$ Estimate subsidized flood protection benefits amount to 13% of a home's value
 - $\rightarrow\,$ Largest subsidies flow to higher-income households
 - ightarrow Evidence of sorting into levee-protected areas ex-post by higher-income households
- Next steps
 - Extending analysis to other forms of public investment in flood risk adaptation
 - Explore likely behavioral responses using simple theory model


Outline

Estimating Public Adaptation Subsidies

Distributional Incidence: Income

Next Steps

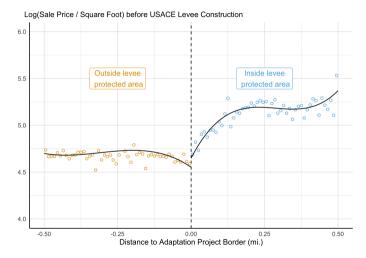
Flood risk adaptation infrastructure in the US

- Data on flood risk adaptation projects from First Street Foundation
- FSF data provide granular, hydrologically-accurate spatial extent of areas protected by projects
 - $\rightarrow \mbox{ Identifies project} \\ \mbox{ beneficiaries }$

Protected Properties (1000s): • 10 • 100 1000 Infrastructure type: • Green & grey • Green infrastructure • Grey infrastructure

Estimating magnitude of public adaptation subsidies: Capitalization

Highland Levee - Highland, IN (constructed 2010)

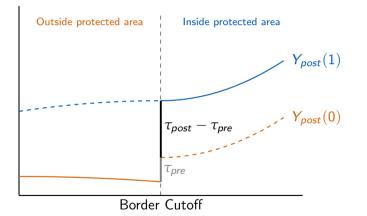


- Combine FSF adaptation project data with home sale data from Zillow (1990-present)
- Spatial RDD: compare sale price of homes on either side of protected area boundary

Endogeneity of adaptation infrastructure siting

- Problem: Location of protected areas is endogenous; may be affected by home values or other local characteristics
- USACE levees appear to protect higher value homes
 - Estimate pre-construction discontinuity of +6%
 - Evidence that higher income areas more likely to receive an adaptation project

Treatment endogeneity



Addressing siting endogeneity: Difference-in-discontinuities (DiRD)

- Simple two-period setup:
 t ∈ {*pre*, *post*}
- Logic similar to DiD:
 - → Now focus on difference in the discontinuity before and after treatment, rather than avg. outcomes
- Pre-treatment RD measures effects of other changes and non-treatment sorting

Addressing siting endogeneity: Difference-in-discontinuities (DiRD)

- Simple two-period setup: $t \in \{pre, post\}$
- Logic similar to DiD:
 - → Now focus on difference in the discontinuity before and after treatment, rather than avg. outcomes
- Difference of post- and pre-treatment RD is the LATE of interest

Difference-in-discontinuities (DiRD)

- Estimand, identifying assumptions, and estimators formalized by Grembi et al. (2016) and Butts (2021)
- Let the sale price of property *i* at time $t \in \{pre, post\}$ be given by:

$$Y_{it} = f_t(D_i) + \underbrace{\gamma(D_i)\mathbb{1}(D_i \ge 0)}_{\text{pre-treatment discontinuity}} + \underbrace{\tau(D_i)\mathbb{1}(D_i \ge 0)\mathbb{1}(t = post)}_{\text{post-treatment discontinuity}} + \varepsilon_{it}$$

where

- D_i is a measure of geographic proximity to adaptation project boundary (> 0 implies inside)
- $f_t(D_i)$ is the (potentially) time-varying, untreated location-specific component
- $\gamma(D_i)$ is a time-invariant discontinuity at the cutoff
- $\tau(D_i)$ is the treatment effect of interest

Difference-in-discontinuities (DiRD)

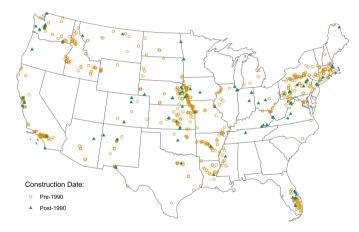
- Identifying assumptions: combine RDD and DiD assumptions

- $\rightarrow~$ Continuity in potential outcomes at cutoff
- $\rightarrow\$ Local parallel trends: time-invariant discontinuity constant over time

Identification assumptions

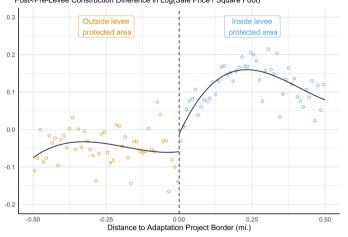
- Time-invariant discontinuity at cutoff, $\gamma(D_i)$, allows for
 - Compound treatment so long as it does not change concurrently with treatment of interest
 - Baseline differences between treatment and control populations
- \Rightarrow Accounts for primary endogeneity concern of non-random siting of investments

Difference-in-discontinuities (DiRD)


- Follow standard RDD approach of local linear regression: functions of D_i are linear in Euclidean distance to adaptation project boundary (e.g., $\tau(D_i) = \beta_0 + \beta_1 D_i$)
- Pooled DiRD estimator adapted from Grembi et al. (2016) using repeat sales data \rightarrow Jointly estimates pre- and post- construction boundary RD
- Restrict sample to observations in the interval $D_i \in [-h, h]$ and estimate:

 $Y_{it} = \underbrace{\delta_0 + \delta_1 D_i + A_i (\gamma_0 + \gamma_1 D_i)}_{\text{Pre-construction RDD}} + \underbrace{T_{it} [\alpha_0 + \alpha_1 D_i + A_i (\beta_0 + \beta_1 D_i)]}_{\text{Post-construction RDD}} + f(\textit{coord}_i) + \phi_i + \phi_{a(i)} + \phi_t + \varepsilon_{it}$

where


- $A_i = 1(D_i \ge 0)$
- ϕ_i , $\phi_{a(i)}$, ϕ_t = parcel, adaptation project, and month-of-sample FE, respectively
- $f(coord_i) =$ flexible polynomial in latitude-longitude following Dell (2010)
- β_0 = DiRD estimand, coefficient on full treatment ($A_i \times T_{it}$)

Setting: USACE levees

- Focus on a subset of projects funded at the Federal level with consistently sourced data: USACE levees
- Benefits: (1) construction date available; (2) similar set of project types
- Soon: data on construction date for other project types

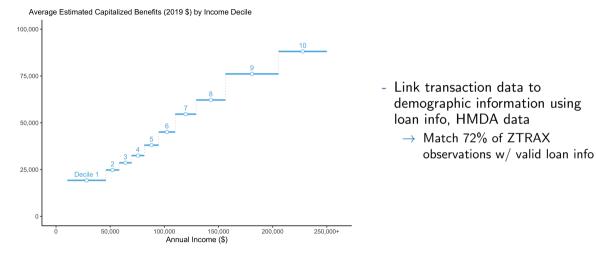
Pooled DiRD Estimates

Post-/Pre-Levee Construction Difference in Log(Sale Price / Square Foot)

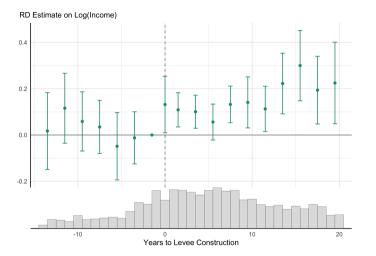
- RD plot shows discontinuity in _ pre-/post-construction difference of average sale price
- Calonico et al. (2014) optimal bandwidth selector: h = 0.38 mi
- Robustness check: RDD in _ pre-/post-construction difference

Pooled DiRD Estimates

- RD plot shows discontinuity in pre-/post-construction difference of average sale price
- Calonico et al. (2014) optimal bandwidth selector: h = 0.38 mi.
- Robustness check: RDD in pre-/post-construction difference



DiRD event study



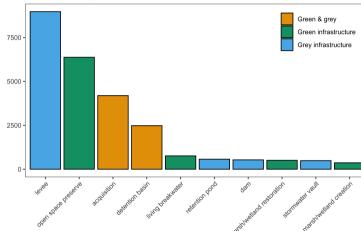
- Joint estimation of boundary RDD by year relative to levee construction
- In the process of estimating pooled DiRD estimator that is robust to staggered adoption a la Sun and Abraham (2021)

Incidence of protection benefits

Ex-post sorting into protected areas

- Joint estimation of boundary RDD in income by 2-year bins relative to levee construction
- Pooled estimate: income ↑ 5% post-construction

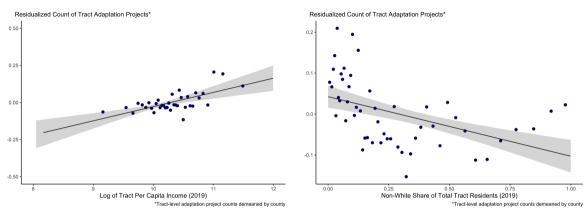
Summary and next steps


- Find suggestive evidence of substantial capitalization of flood protection benefits from public investments
- Improvements to current estimates:
 - Account for variation in discontinuity along boundary
 - Collect cost data on USACE levees for benefit-cost analysis
 - Further robustness checks
- In the process of collecting necessary data to expand current analysis to other adaptation project types in FSF database (e.g., beach renourishment, dams, pump stations)
- Policy implications
 - Simple theory model: inform likely efficiency implications on intensive/extensive margins
 - Bring attention to the siting process

Thank you!

Please reach out with comments/questions Email: jbradt@g.harvard.edu Website: www.jacobbradt.com

Backup slides

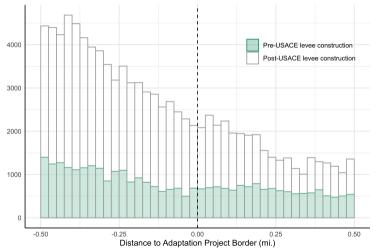

Flood risk adaptation project types

Top 10 adaptation types in nationwide FSF database

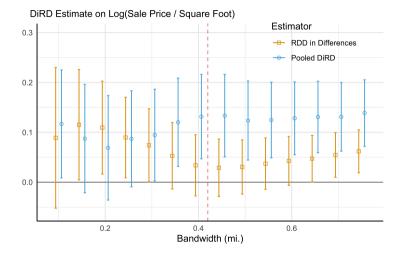
Total unique adaptation projects = 26,947

Endogeneity of adaptation infrastructure siting

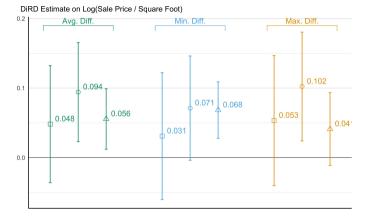
- Find non-zero relationships between the number of adaptation projects in a Census tract and socioeconomic measures, suggesting non-random siting
- Above relationships are ex-post: could result from sorting post-construction


Difference-in-discontinuities (DiRD) identification

- Identifying assumptions: combine RDD and DiD assumptions
 - 1. $f_t(D_i)$ is continuous at the cutoff, $D_i = 0$, $\forall t \in \{pre, post\}$
 - 2. $\tau(D_i)$ is continuous at the cutoff, $D_i = 0$
 - 3. $E[\varepsilon_{it}|D_i = D]$ is continuous at the cutoff, $D_i = 0$, $\forall t \in \{pre, post\}$
 - 4. $\gamma(D_i)$ is indeed time invariant ("local parallel trends")
- Continuity assumption on $E[\varepsilon_{it}|D_i = D]$ rules out time-varying sorting: households sorting into treatment post-construction in a way that influences house prices
 - Not a major concern since this sorting effect on prices is a real component of the subsidy


Go back

Running variable density


Number of Transactions

Bandwidth robustness

RDD on differenced data

□ No Controls O Time Controls △ Time + Spatial Controls

- Three within-property, pre-/post-construction differences:
 - Diff. of average prices
 - Diff. of prices closest to construction date ("min")
 - Diff. of prices furthest from construction date ("max")
- Use bias-corrected estimator of Calonico et al. (2014)

RDD on differenced data: Full estimates

	Average Difference			Minimum Difference				Maximum Difference				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
LATE	0.048 (0.043)	0.094 (0.036)	0.056 (0.022)	0.070 (0.054)	0.031 (0.047)	0.071 (0.038)	0.068 (0.021)	0.069 (0.048)	0.053 (0.048)	0.102 (0.040)	0.041 (0.027)	0.070 (0.060)
h Observations Time Controls Spatial Controls SE Type	0.230 4195 BC	0.213 3883 Y BC	0.420 8494 Y Y BC	0.547 11413 Y Y Tract	0.206 3743 BC	0.221 4021 Y BC	0.615 13093 Y Y BC	0.690 14989 Y Y Tract	0.240 4614 BC	0.215 3926 Y BC	0.364 7170 Y Y BC	0.488 9961 Y Y Tract

- Optimal bandwidth *h* computed following Calonico et al. (2014)

- Standard errors either robust, bias-corrected RDD SEs (Calonico et al., 2014) or bias-corrected, clustered RDD SEs (Calonico et al., 2019)
- Time controls account for temporal variation in prices before differencing
- Spatial controls include tract, levee FEs and flexible polynomial of latitude and longitude similar to Dell (2010)

Pooled DiRD: Full estimates

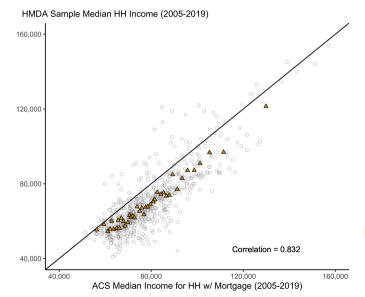
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
LATE	0.110	0.110	0.110	0.119	0.119	0.119	0.120	0.120	0.120
	(0.099)	(0.117)	(0.062)	(0.044)	(0.050)	(0.035)	(0.044)	(0.050)	(0.035)
Parcel FE Time Ctrls. Spatial Ctrls.	Y	Y	Y	Y Y	Y Y	Y Y	Y Y Y	Y Y Y	Y Y Y
<i>h</i>	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380	0.380
SE Type	Conley	Tract	State	Conley	Tract	State	Conley	Tract	State
Observations	94,062	94,062	94,062	94,062	94,062	94,062	94,062	94,062	94,062
R ²	0.824	0.824	0.824	0.915	0.915	0.915	0.915	0.915	0.915

- Standard errors one of: Conley (1999), clustered by tract, or clustered by state
- Time controls include month-of-sample FEs and home age at time of sale
- Spatial controls include tract, levee FEs and flexible polynomial of latitude and longitude similar to Dell (2010)

Falsification tests

	Construction Year $+$ 5	Boundary at -0.05 mi.
LATE	0.025 (0.040)	0.049 (0.043)
	(0.040)	(0.043)
Parcel FE	Y	Y
Time Ctrls.	Y	Y
Spatial Ctrls.	Y	Y
h	0.3	380
Standard-Errors	Cor	nley
Observations	28,9	993
R ²	0.915	0.915

- Falsification tests: shift construction treatment date timing (+5 years) and protected area boundary (-0.05 mi. from true boundary)
- Time controls account for temporal variation in prices before differencing
- Spatial controls include tract, levee FEs and flexible polynomial of latitude and longitude similar to Dell (2010)

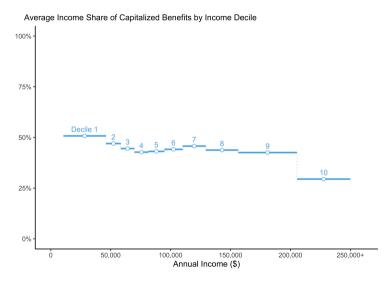

Transaction-level demographic data

	Full Transaction Sample	Transactions w/ Loan Info		
Nationwide Match Rate	0.397	0.716		
State Match Rates				
Mean	0.299	0.640		
Min	0.013	0.180		
p25	0.134	0.610		
Median	0.329	0.661		
p75	0.419	0.723		
Max	0.563	0.852		

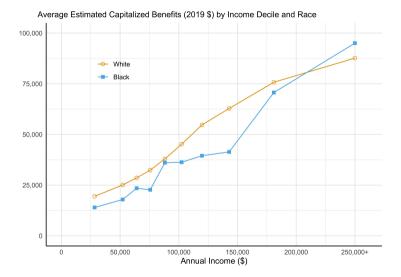
- Match ZTRAX transaction-level data (1990-2020) with demographic data from Home Mortgage Disclosure Act (2020)
- Match on: (1) Census Tract, (2) transaction year, (3) loan amount, and (4) lender name
- Match rates from literature: 54% (Bayer et al., 2016), 47% (Bakkensen and Ma, 2020) of all transactions

Go back

Transaction-level demographic data



- Compare ACS 1-year estimates and matched HMDA sample at state level for 2005-2019


- Can subset ACS HH income data to HH w/ mortgage
- Race/ethnicity ACS data only for owner-occupied HH

Go back

Income incidence of protection benefits

Income incidence of protection benefits

References

- Butts, K. 2021. "Geographic Difference-in-Discontinuities." Working paper.
- Calonico, S., M.D. Cattaneo, M.H. Farrell and R. Titiunik. 2019. "Regression Discontinuity Designs Using Covariates." *The Review of Economics and Statistics*, 101(3): 442-451.
- Calonico, S., M.D. Cattaneo and R. Titiunik. 2014. "Robust Nonparametric Confidence Intervals for Regression-Discontinuity Designs." *Econometrica*, 82(6): 2295-2326.
- Conley, T.G. 1998. "GMM estimation with cross sectional dependence." *Journal of Econometrics*, 92(1): 1-45.
- Dell, M. 2010. "The Persistent Effects of Peru's Mining Mita." Econometrica, 78(6): 1863-1903.
- Grembi, V., T. Nannicini and U. Troiano. 2016. "Do Fiscal Rules Matter?" *American Economic Journal: Applied Economics*, 8(3): 1-30.
- Sun, L. and S. Abraham. 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects." *Journal of Econometrics*, 225(2): 175-199.